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Ffom the President

JAR

The Journal of Automated Reasoning is on schedule. It will ccmmence publieaticn
early in 1985, on a quarterly basis. The cost will be §78 for institutions, $36 fcr private
non-members of AAR, and $27 for private members of AAR.

We are actively seeking papers in all areas of automated reasoning, including
automated theorem proving, logic programming, expert systems, program synthesis and
validation, artificial intelligence, computational logic, and robotics. We expect the jour-
nal to serve as a forum for exchanging information for those interested purely in theory,
those interested primarily in software, and those interested in specific applications. For
example, we have already accepted articles on the following topics:

» Mechanical transformation of program executions toc derive concurrency, by Christian
Lengauer. Concurrency is derived by transforming the sequential execution cf a program
into an equivalent concurrent execution on the basis of formal transformation rules. The
paper contains a proof, using the Boyer-Moore theorem prover, of the equivalence of the
executions for an example involving sorting networks.

« Deduction in non-Horn databases, by Larry Henschen and Adnon Yahya. This paper stu-
dies the use of theorem-proving techniquesin databases containing non-Horn clauses. An
improved algorithm is given for certain kinds of negative informaticn. Query answering
in non-Horn databases is compared with the Horn case.

. « ROGET: A knowledge-based system for acquiring the conceptual structure of a diagnestic
expert system, by James S. Bennett. This paper describes the structure of the ROGET
system and democnstrates how it might have assisted with the acquisition of the concep-
tual structure of the MYCIN. system. Use of ROGET for acquiring additional forms of
expertise is also discussed.

Questions about manuscript submissions may be addressed to the editor-in-chief

L. Wos

Mathematics and Computer Science Division
' Argonne National Laboratory

Argonne, llinois 60439



Tel.: (312) 972-7224 (office)
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- Successes with Program Verification Systems
> Two recent successes with pregram verification systems deserve mention. Boyer
and Moore have verified an NSA encryption algorithm currently in use, and Geed hes

verified a 4200-line GYPSY program that is an encryption packet interface to the
ARPANET.

Future Newsletters

So that the future newsletters can keep our members well informead, please send
any appropriate anncuncements to us at Argonne National Labcratory. For example, we
shall be pleased to announce current research, new software, experimental results, new
baoks, new problems for testing programs, and descriptions of open gusstions.

New Books

Several new books have come to'our attention:

s The Computer Modelling of Mathemalical Reasoning, by Alan Bundy, published by
Academic Press. This book represents a successful attempt to unify various approachss
to the application of artificial intelligence ideas, particularly in the area of deduction, ta
the process of doing mathematics. Along the way, it gives very clear introductions to
several topics in automated reasoning, including basic logic, higher order logics,
resolution-based theorem proving, search strategies, and rewrite rules. It gives several
examples of systems that apply these ideas to mathematics.

= Micro-Prolog: Programming in Logic, by K. L. Clark and F. G. McCabe, published by
Prentice-Hall. This is a tutorial introduction to logic programming and Prcleg in particu-
lar. The syntax used is that of the Prolog system micro-Prolog, which can be cbtained fer
a variety of microcomputers. The book includes applications of Prolog to critical-path
' analysis, expert systems, games, and problem-solvmg [t requires no background in logic
or programming.

« Implementations of PROLOG, edited by J. A. Campbell, and published by Ellis Horwoed
Limited. This book is a collection of papers on implementation-related issues in Prolog.
Most of the papers assume familiarity with Prolog.

« Automaied Reasoning: Mitroduction and Applications by Wos, Overbesgk, Lusk, and -
Boyle, published by Prentice-Hall in February 1984. This bock is available in both soft
cover and hard cover. [t assumes no background, discusses varicus applications, and
contains numerous examples and exercises. The applications include circuit design, cir-
cuit validation, program verification, é_.nd research in mathematics and in formal logic.

‘New Journal Announced

A new journal, the Jowrnal of Symbolic Computation, will begin publication in early
1985. Published by Academic Press, the journal is intended to provide a forum for
research in the algorithmic treatment of all types of symbolic objects -- formulae, terms,
programs, and algebraic and geometric objects.

Three basic aspects will be emphasized: mathematical foundatiorns, correctness, and
complexity of new (sequential and parallel) algorithms; implementation of the algorithms
in software systems; and applications of the systems as tools for problem solving in the
mathematical and natural sciences. :
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Manuscripts should be sent in triplicate to the editor-in-chief

B. Buchberger

Journal of Symbolic Computation
Johannes-Kepler-Universitat
A4040 Linz

Austria ,

Tel.: Austria (732) 232381-9219
Telex: 2-2323 uni li a

* Call for Manuscripts - EURGCAL '55
v A call for papers has been issued for the Eurcpean Conference on Computer Algebra
to be held at Linz, Austria, en April 1-3, 1885. ’ '

Manuscripts are welcome on topics in computer algebra, including simplification of
- algebraic and transcendental terms; symbolic integration, summaticn, sclution cf
differential equations; exact computation of zeros; and computational numbers, group,
and ring theory. A special emphasis of EUROCAL 85 will be on the interaction of cem-
puter algebra with related areas, for example, :

+ Manipulation of abstract data type specifications

+ Computer-aided program verification, synthesis, and transformaticn
+ Parallel algorithms and hardware for symbolic computation

+ Integration of computer algebra systems into expert systems

The deadline for submission of papers (maximum 12 pages) is November 15, 1984.

' Extended abstracts (maximum 2 pages) and systems demonstrationsare also welcome;

_these are due January 15, 1985. Four copies of the contributions should be sent to ihe
program chairman B. Buchberger (address given above).

On Ffficient Unification without Occur Check
{from David A. Plaisted)

Since the introduction of the unification algorithm by Robinson in 1965, many
improvements in efficiency have been made (see, for example, Patersen and Wegman,
JCSS 18, pp. 18-167, 1978). We present ancther improvement that permits the occur
check to be omitted in many cases. The occur check is necessary when unifying a vari-
able z with a term £; it is necessary to check if £ occurs in £ so that, for example,  and
f (z) do not unify. Most Prolog implementations do not use true unification, but instead
perfcrm unification without oceur check.for efficiency reasons; this can create terms
with loops in them. ( For an introduction to Prclog, see Clocksin and Mellish, Frogram-
ming in PROLOG, Springer-Verlag, Berlin, 1981.) Plaisted, in a presentation at the 1884
Symposium on Logic Programming at Atlantic City, showed how true unification can be
simulated in Prolog by unification without occur check except in a few casss, in typical
Prolog programs. Thesé same ideas apply to any application where unificaticn is neces-
sary, such as theorem proving and pattern matching. However, this application is not
made clear by Plaisted’s paper. We briefly mention how these ideas can be applied in
general, possibly leading to significant speedups in resclution theorem provers. Similar
ideas were presented by Stickel at the Atlantic City symposium.

Definition. A literal L is lineer if it has no repeated variables. Thus
P(f (z),y.9(2)) is linear but P(f (z).y.g(x)) is not.

Proposition. Suppese L and M are literals and at least one of L. and M is linear.

Suppose L and M have no common variables. Then when unifying L and #, unification
without occur check is equivalent to unification with occur check.
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This observation may be applied to theorem provers. One can keep a flag with each
literal of a clause telling whether it is linear. Then when unifying two literals frem
 different clauses during resolution, if cne of the literals is linear, unification without
ocecur check may be performed. This is correct because variables from different clauses
are renamed befors such a unification is performed. However, it is still necessary to
detect if a literal is linear, which may require searching through the entire structure of
the literal. This search can also be eliminated in many cases, as we now show.

Proposition. Suppose L;, Lg, and M, are literals and L3 and M, are linear. Suppcse
M, has no common variables with L, or Lg. Let ¢ be the most general unifier of Ll and
M,. Then Lgois linear.

Corollary. Suppese C and I are two clauses and L; and M, are literals of C'and D,
respectively. Assume C and D have nc common variables. Let o be the most general
unifier of L; and #;. Then if ¥ if linear and Ly is a linear literal in C, Lpo is linear. By
symmetry, if My is a linear literal in D and £ is linear, then Mpo is linear. Thus it is
often possible to know that literals in the resolvent of two clauses are linear without even
looking at them.

It is possible to say more if we know that Ly or M, isa ground literal. With C and D
as above and ¢ a most general unifier of L, and ¥, if L; is a ground literal and Lz is a
linear literal of C, then Lgao is Ly, which is linear.
‘If Ly is a ground literal and Hp is a linear literal of D, then Mpo is linear, since ¢
replaces variables by ground terms. Symmetrical statements can be made if Lg is a
ground literal.

One more improvement is possible. When unifying L and M, if L and M have no
common variables, an occur check is not necessary when unifying z with £ if the variable
z has never been seen before during this unification.

It appears that this use of -unification without occur check could result in a
significantly faster unification algorithm, yielding speedups even greater than these pos-
sible using the currently best known algorithms.

A Solution to the Probiem from Lewis Carroll

(from E. Lusk)

In the last newsletter, a problem from Lewis Carroll was posed. Two formulations
were given. The second formulation included the following clauses:

1. -a]-blec ‘ (11 -cl-t]e
2. -e|-k|m 12, a

3. -r|s|t 13. h

4 -cl|l-dlk : 14.alb

6 -rle|n 15.¢]d

6. -h|-l]r ‘ 16.e|h

7. -c|-m]-e | x|l

B. -=slnl-k : 18. min
9. -a|bf|-h|-r ‘ 18.r|s

10. -a|-d|1
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The problem was to determine the end of a sentence given by Carroll. One might view
this as a challenge to determine the "strengest upit" deducible from the given set of
clauses. The answer is "-d", which corresponds to the staternent that "all monitors are
awake'’. The deduction is as follows:

20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

30.

-b | c from clauses 12 and 1 31.
-h|-r | b from clauses 12 and 9 32.
-d || from clauses 12 an& 10 33.
-1 | r from clauses 13 and 6‘ 34.
s | t from clauses 19 énd 3 35.
1] ¢ from clauses 22 and 15 36.
¢ | r from clauses 25 and 23 37.
BI c from c;auses 21, 13, and 28 a8
¢ from clauses 27 and 20 | 39
els fr;am clauses 28, 11, and é4 40
-d | k from clauses 28 anci 4
Logic Problems

(from C. Morgan)

Charles Morgan from the University of Victoria has sent in some logic problems.
These are not open problems, but they do provide some interesting difficulties for
theorem provers or reascning programs in general. The exioms are as follows:

1. Pxi(y.x) .
2. Pi(i{xi(y.2)).i(i(x.y).i{x.2))))
3. P(i{n(x).n{)).i(y.x)))

4. HKP3ix,y) & P(}t)\ then P(y)

Roughly speaking, P means "is provable”, i means "implies”, and n means "not”. Thus
Axiom 4 prepresents the inference rule of modus ponens. '

Problem 1: For all x, P(i(x.n(n(x)))).
Problem 2: For all x, P(i(n{n{x))},x)).
Harder problems arise when Axiom 3 above is replaced by ,
3. POy x)i(m(x) ()N
So the next problem is:

Problem 3: With axiom 3 replaced by axiom 3', P(i(x,n(n(x)}))) for all x.

We have done some experimentation with these problems, which we will report on in
the next newsletter. o

Open Questions
Progress is being made on one of the goals of AAR, that of compiling a set of open
questions for attacking with an automated reasoning program. We have received

-m | -e frem clauses 28 .and 7
-d | rfrom clat;seé 23 and 22
-e | -k from clauses 31 and 2
-e | n from clauses 31 and 18
<k | s from clauses 33 and 29
-rvi‘n from clauses 34 and 5

-k | -n from clauses 35 and 8

.-d In from clauses 36 and 32
.-n | -d from clauses 37 and 30

.-d froin cladses 39 and 38
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contributions from Ed Howorka, a mathematician from the University of Virginia; Curt
Lindner, a mathematician from Auburn University; Michael McRcbbie, a logician frem the
~ Australian National University; and Ward Henson, a mathematician from the University of
lllincis. Below is Henson's contribution.

Identities of Real Exponentiation (from C. W. Henson)

Consider terms bu.ilt up from variables and the constant I using the three binary
function symbols +, ., and exp. We interpret these terms in the natural way over the
positive integers, N or the positive real numbers R*. Let ID be the set of equations
£, = f3 which are valid under these interpretations. (By classical results of G. H. Hardy,
the valid identities over N are exactly the same as over R' The set /D is recursive by
results from Macintyre (Springer-Verlag Lecture Notes in Mathematics, Vol. 830). We are
initerested in the formal derivability of identities, using rules cf inference in equational
logic. For example, it is an open problem whether there exists a finite set Elsubsef/D .
such that every identity in JD can be derived irom E.

Alired Tarski raised the questxon whether every 1dent1ty n I.D can be derived from

the familiar set of "high school algebra identities":
( 1"-1 zl=lx=z1= 2:
' =YLz, 2Y =Y
hz (y +z) x +gzjgiz xé:yz) =(zy)z
(H5) S At i
xy +z =xy xzz
(zy ) =z% xy*®
a0y =2¥*

s .
Alec Wilkie answered tvhe question négatively by showing that the identity
(W) ((z+1)7+(z%+z+1)2 W {({z3+1)spy +(z*+z2+ 1)¥))*
(z+ 1)V +(z2+z +1)¥)° ((z3+1)7 +(zt+22+1)7)Y
cannot be derived from (HS). (The fact that it is valid over R* can easily be shown by

considering the factor (zz—z-l»l)”" ; note that this is not a term in the formal language
being considered here.)

Wilkie's argument used proof theory. More recently R. Gurevié presented a 59-
element model in which Tarski’s high school identities are true and Wilkie's identity is
false. The same kind of result can also be proved when ¥ in (W) is replaced by a
sufficiently complicated term in = alcne, for example, z®.

Given this background, consider the followmg test problems for automated
theorem-proving testing systems: :

(A} Verify that ( W) cannot be derived from (HS).
(B) Find a finite model for {#S) in which (#) is false. How small can such a model be?

(C) Do {A) and (B) for identities obtained from (W) by replacing ¥ by % or other terms
in x alone. (Especially interesting is 'y—z 2)

(D) Find ”mmpler" ldentltles than (#) that are valid over R*, but that cannot be derived
from (HS).

Problem Sets

Ancther of the goals of AAR, the formulation of a set of basic problems to test ideas .
with, is moving forward. Overbeek of Argonne and Siekmann of the University of
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‘Kaiserslautern are putting together such a set. In particular, Overbesk and Lusk (also of -
Argonne) have assembled a set of graduated problems for testing paramodulation, an
inference rule that "builds in" equality substitution. This set of problems is included
below. : ‘

Graduated Problems for Testing Equality Reasoning (from R. Overbeek and . Lusk)

‘ Below are six problems that we have used as benchmarks during the development of
our theorem-proving systems. We have arranged the probiems into an order that refiects
their relative difficulty. They are as follows:

Problem 1: Ina group, if z% = e for all x in the group, then the group is Abelian (for all
: z and ¥y, TY = YT)

Problem 2: In a group, (.'z:v_l)_1 = z for all  in the group.
Problem 3: Inaring, if z% = z for all = in the ring, then 2y = yx fof all z,y in the ring.

Problem 4: In a group, if z8=¢e for all x in the group, then the commutator
: h{h(zx,y)y) = e for all x and y. The commutator 2(x ¥) is defined as

zyz iy

Problem 5: In a ternary Boolean algebra with the th.irdvaxiom removed, it is true that
flzg@)y)=yforallz andy.

Problem 6: In aring, if z8 = x for all Z in the ring, then zy =yx for allx and ¥ in the
The first problem is a classic in the thecrem proving literature. It is normally used
as an initial test to verify that an equality reasoning component is functioning properly.

The second problem is also quite simple, and should be easily solved by any system
that includes substitution and simplification capabilities.

The third problem introduces the axioms for a ring. It is of moderate diﬁ'iculty.

The fourth problem, also a classic, is substantially more difficult than the first two
problems. It was included in one of the papers that introduced paramodulation (see Wos
and Robinson, Machine Intelligence, Edinburgh U. Press, 19969, pp. 135-150).

- The fifth problem involves ternary Boolean algebras, a rather obscure area in
mathematics. Our system attained a proof of this problem by using "noncomplexifying
paramodulation”. In this restriction of paramodulation, variables that occur beth in the
into term and outside the into term can be instantiated only to other variables or to con-
stants (variables in the from term can be arbitrarily instantiated). We have found non-
complexifying paramodulation useful in other proofs, as well; however, no comprehensive
study has been made of its general utility.

The sixth problem is truly difficult for existing systems. Two researchers have
reported on approaches that resulted in proofs (Stickel, Lecture Notes in Computer Sci-
ence, Vol. 170, 1884, pp. 248-258; and Veroff, ANL 81-6, February 1981).

1. Problem 1

1 f(e,x) =x e is a left identity

2 f(x,e) =x e is a right identity

3 flg(x).x) =e o there exists a left inverse
4 =e - which is also a right inverse

f(x.g(x))



5 f(i(x.y).z) = f(x,f(y.2)) associativity
6§ x=x reflexivity of equality
7 f{x,x) =e " z? =g (special hypothesis).
8 -(i(a,b) = f{(b,a)) : denial of the thecorem .
9 f(x,f(y.f(x.,¥))) = 75655
10 x = i(y.f(y.x)) 751
11 f(x.f(y.x)) =¥y g 10 2
12 f(x,y) = f(y.x) ‘ - 11 10
13  null _ 12 8
‘2. Problem 2
1 f{e,x) = x : e is a left identity
2  f(x.,e) = x e is a right identity
3 f(g(x), x) =g there is a left inverse
4 f(x,g{x)) = e which is also a right inverse
5 f(f(x,y).z) = I(x,i(y.2)) associativity
8 x =X . reflexivity of equality
7 -{g(g(a)) = a) : denial of the thescran
8 2z = f{x,f{g(x).2z)) 541
9 glg(x)) = 8 42 ~
10 null g7
3. Problem 3
1 j(0.x) =x 0 - is a left identity for sum
2 j(x,0) =x ‘ and a right identity for sum
3 i{ge(x).x) =0 there is a left inverse for sum
4 jx,ex)) =20 ‘which is a right inverse for sum
5 jlix.y).z) = ilx.i(y.z)) associativity of addition
68 x=x _ reflexivity cof equality
7 jlx,y) = j(y.x) cammtativity of addition
8 f(i(x.y).z) = f(x,i(y.2)) associativity of multiplication
9  i(x,i(y,2)) = j{(f{x,y).f(x,2)) distributivity axioms

10 £(i{y.2z).x) = i(f(y.x),1(z,x))

i1 f(x.x) = x 23 =z (special hypothesis)
12 -(i(a,b) = i(b.a)) denial of the theorem

18 f(x,i(x,y) = §(x,1(x,¥)) 11 9 |

14 f(x,j(x,x)) = ji{x.,x) 11 13

15 j{x.y) = j(f#(x,i(x,y)). . {(y,i{x,¥))) i1 10

16 }(X Xx) = J(](x x).i(x,x)) 14 15 14

17 3(i(x.x).y) = i(i(x,x),j(i(x.x). Y)) 16 5

18 0 = j{x,x) : 17 4 4 2

19 j{x,i(y.2)) = i(y.i(x,2)) 755

20 J(X y) = i(x,i(y,i(f(x,y).8{y.x)))) 159 11 9 11 7 5 19
21 = j(g(x),i(x,y)) ‘ 3561

22 j(x.j(f(y.x),f(x.y))) = x , 21 20 21

23 jli(x,y).i(y.x)) = 0O 21 22 3

2¢ x = j{y.i(y.x)) : 518 1

25 f({x,y) = f(y.x) 24 23 2

26 null - 2512



4. Problem 4
1 f(e,x) =x ' e is a left identity
2 f(x,e) =x and a right identity
3 f(g(x).x) =e there is a left inverse
4 f(x,g{x)) = e -which is also a right inverse
5  f(f(x,y).z) = f(x,f(y,z)) asscciativity
6 X=X reflexivity cf equality
7 hix.y) = {(x, f(y f(g(x), g(y)))) definition ¢f commtator ‘
8 f(x,f(x,x)) = z3= e (special hypothesis)
9 -(h{h(a,b).b) = e) _ denial of the theorem
10 g(e) = ‘
11 -(f(a, f(b f(g(a), f(g(®), i(b, f(g( (a,i(b, f(g(a) g(b))))) g(b)))N))
= e) 977555
12 x = i(y,f(g(y),x)) 541
13 x = £(g(y). i (y,x)) 531
14 e = f(x,f(y,g(f(x,¥)))) 5 4
: 13 11
18 g(g(x)) = x , 12 4 2
17 - £(g(x).g(x)) = x iz 8 2
18 f(x,x) = g(x) ' 17 186 16
19 i(x,i(y,.f(x,¥))) = g{f(x.y)) 18 5
20 f{g(x).y) = f(x.i(x,y)) 18 5
Bl i(x,f(g(y).x)) = f(y.g(i(g(y).x))) 19 12
22 f(x,f(y.x)) = H{g(y).g(f(y.x))) 19 13
23 f(x,f(g(y) . f(x.2))) = f(y.f(e(i(gly) . x)).2)) 21565
24 f(x,i(y.f(x,2))) = f{ag(y).f(g(f(y.x)), 2)) 22 555
25 -(f(e,f(g(b),.f{g(a).f(g(b).f(a,f(b,f(g(a),b))})))) = e) :
24 15 5 5 18 18 5‘5 20
26 f(x,g(f(y.x))) = g(¥y) 14 22 10 2 14 2
27 g(i(x.y)) = f(g(y).e(x)) ' 26 13
28 f{x,f(y.i({x.y})) = f{el(y).e(x)) 27 19
28 f(x,f{g(y).f(x,2))) = i{y.f(e(x) . f(y.2))) 27 23 16 5
30 -(e =€) , 29 25 20 28 16 16 12 8
31 null 30 6
5. Problem 5

Ternary Boolean algebras were defined in by A. A. Grau in 1947 ("Ternary Boolean

algebra", Bulletin of American Math. Soc. 53, 6, June 1847, pp. 567-572). Later Chinthay-

amma published work on independent axioms for ternary Boolean algebras (see "Sets of

independent axioms for a ternary Boolean algebra”, Notices Amer. Math. Sce. 18§, 4, June
1969, p. 654).

The function f can be thought of as a three-place product, and the function g may

‘be thought of as inverse.

1

O bW

F(f(v,w,x),vy, f(vwz)) f(vwf(xyz)) ,
of a ternary boolean algebra

ax. 1
fH{y.x,x) = x ax. 2 of a ternary boclean algebra
f(x,y,g(y)) = x ax. 3 of a ternary boolean algebra
f(x,x,y) =x ' ax. 4 of a ternary boolean algebra
tle(y) v.x) = x ax. 5 of a ternary boolean algebra

X=X ' reflexivity of equality
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Now remove axibm 3 and add the foli‘owing lerma:

7 f(x,y,x) = x

lenma provable fram 1, 2, 5, and 8

. The denial of tke theorsm is =as fcllows:

8 -(f(a,g(a),b) = b)

9 f(fl{v,w,x),x,v) = f(v,w,x)
10 f(f(y.wl,z).y.z) = f(y,wl,z)
11 f(i(v,w.g(y)).y.v) = v

12 i{x,y,i(v.,x.y)) = £(v.x,y)

13 f(f(v,w,x),x,f(vl,v,w)) = f(v,w,x)

14 f(y.g(y).z) =z

18 null

6. Problem 8

1 j(0,x) = x

2 i({x,0) = x

3 jle(x).x) =0

4 i(x,g(x)) =20

8  j(i(x.y).2) = i{x.i(y.2))
8 X = X

7 i(x,y) = i{y.x)

8 f(i(x.y).z) = i(x,f(y.2))
g f(x.i(y.z)) = i(i{x,y).f(x,2))

10 f(jly.z).x)
11 f{x,f{x,x)) =x
12 -{f(a,b) = f(b,a))

J(f(y.x) . f(z,x))

denial of the theorsm

17 4
19249
1787
122
112 4
113210 112
8 15

0 is a left identity for sum
and a right identity for sum .
there is a left inverse for sun
which is a right inverse for sum
associativity of addition
reflexivity of equality
camutativity of addition
associativity of mmltiplication
distributivity axians

z3 =z (special hypothesis)
denial of the theorem

The proof of this theorem is complex enough to prohibit the type of presentation that we

- have used for the preceding theorems. We include a proof in the form that a human
mathematician might write it. Since the problem is a standard one for graduate courses
in algebra, there are commonly available proofs. However, the one that we supply seems

somewhat unusual. It was given to us by Steve Winker.

Proof:

(1) Note that (z%)? = 2%, since z° = z.

(2) First, we prove that z?yPx? = yRxPy®:

K we multiply out (x%2—y*®)? and simplify the result, we find that

(zz_yg)a = 22 — z%y%z? + yPziy? —y?

" However, since (z?—y?)? = (z?-y?®) by the hypothesis of the theorem, zRyPr? =

yPzy?.

(8) Now we can show that squares commute; that is, for any x,y

z%y? = 4Pz
Start with the equation
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zPy?r? = y2ry?.
If we right multiply each side with (wey 2.4":2y2) and simplify the result, we derive

2Py®R = yPr Pyt .
On the other hand, if we left multiply each side by (ygxeyzxg) and - simplify, we

derive
2,2 _,.,2.2,,2
Y=z~ =y~ Y.
2.2

By transitivity, we arrive at the desired lemma: :z:zy2 =y x

(4) Now we can show that a square will commute with anything; that is, fer any z and ¥/,
R — /80,
Yy = yz:
zy?)8 = =
(yzm)"J = y (xy zy)z = ("’y =y®)y
Thus, zy® = (2y®)° = zy%zy®s = (y%)° = y%z

)y zytry*r (smce squares commuta)
8z ~ 2 ,

Xy ez“g x

(5) Now we can finish the proof of the thecrem: for any  and ¥, 2y = ¥Z.

TY = 2yryzy = zyryszy = *y("y)y xy = Yy’ Coyzy =
Yy (zy) -ryy(ry)w =Y Yoy )y = z(zy)yy =
rrymyyyy = hyry? = yiyse? = *

The set of six problems represents a wide range of difficulty. The first two problems
are relatively trivial. The third and fourth are fairly difficult, although there are several
-existing theorem-proving systems capable of deriving proofs in fairly short time periods.
We have found the fifth problem quite challenging, although the proof is not terribly long.
The sixth problem represents the mest complex problem in oquah‘ry for which a proci hes
been derived by an automated system.

The reader should note that the proofs given are not always exactly tho generated
by automated reasoning systems. In some cases, we have shortened procfs derived by
our system. We include proofs only as aids for those who wish to study exactly why their
system might be failing to reach a complete proof.



