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From the President

This issue of the AAR newsletter continues the dual focus established in earlier
newsletters—a focus on problem sets, open questions, and puzzles on the one hand, and
on announcements about workshops, journals, and such on the other. AAR members are
encouraged to send any appropriate material to us at Argonne National Laboratory. We
shall be pleased to announce current research, new software, experimental resuits, new
books, new problems for testing programs, and descriptions of open questions. We are
also interested in letters that contribute information on topics discussed in these
newsletters; this issue contains such a letter, a valuable contribution from Dallas Lank-

ford.
" New Journals

JAR

The Journal of Automated Reasoning published its first issue in February 1985.
Featured in that issue is an overview article, actually a compendium of articles, each cov-
ering some field for which autometed reasoning is relevant. The overview not only
presents the goals and current research of the individual flelds but also explains how the
fields collectively share the interest of automating the process known as reasoning. Elght
articles are included:

« What Is Automated Reésonlng? - L. Wos

. Logic Programming - F. Pereira

» Research in Intelligent Robots - R. Hong

« Program Verification - R. S. Boyer and J S. Moore |

* What Is Automated Theorem Proving? - W. W. Bledsoe and L. I. Henschen
QExpert Systems - B. G. Buchanan

« Nonclassical Logic Theorem Proving - G. Wrightson

« What Is Program Synthesis? - C. Green

JAR continues to seek papers; descriptions of actual successes with existing
automated reasoning programs are of especial interest. And a reminder: one of the
benefits of AAR membership is that members can subscribe to the journal at a reduced
cost. The subscription price is 827 for private members of AAR; private non-members of
AAR are charged 838, and institutions §78. Questions about manuscript submissions or
membership may be addressed to



L. Wos
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, [llincis 60439
(312) 972-7224

In Europe, subscription information is available from

Kluwer Academic Publishers Group
P.0. Box 322
8300 AH Dordrecht

~ Holland -

CC-AIL .

A new international publication, the Journal for the Integrated Study of Artificial
Intelligence, Cognitive Science and Applied Episternology, or CC-Al, has been anncunced.
The journal will cover such arees as knowledge representation, expert systems, planning
and search systems, cognitive modelling, logic programming, applied epistemology, and
general aspects of artificial intelligence. : _ : ‘ v

“The first issue of CC-Al is devoted to expert systems, including articles on

+ strategy for building expert systems

+ knowledge extraction :

+ knowledge representation

+ tools for developing expert systems . o

+ E25's use of PERQ in developing an expert system

Articles, book reviews, advertising, and news items may be sent to

Michele Drolet, Managing Editor
CC-Al ‘ '
Blandijnberg 2

B-9000 Ghent, Belgium

Coming Workshops and Meetings

ANL Tutorial/Workshop on Antomated Reasoning

On June 4-5, 1985, the automated reasoning group of the Mathematics and Computer
Science Division at Argonne National Laboratory is giving its fourth tutorial /workshop on -
.automated reasoning. The workshop consists of a set of lectures besed on the book
Automated Reasoming: Introduction and Applications, by Wos, Overbeek, Lusk, and
Boyle. The focus will be on the elements and applications of automated reasoning, includ-
ing research in mathematics,:logic circuit design and validation, and proving properties
of computer programs. Attendance is by invitation; anycne interested in attending may
call Mike Harris (312-972-5787) or Larry Wos (312-972-7224).

Workshop on Knowledge Engineering/Expert Systems

The twenty-fourth annual workshop sponsored by the Western Committee of the
IEEE Computer Society will be held September 4-6, 1965, at the UCLA Conference Center
at Lake Arrowhead. The subject of the workshop is "Knowledge Engineering: How?" Ses-
sions are planned on knowledge acquisition, knowledge representation, inferencing sira-
tegies, and programming environments.

Attendance is by invitation. People working in the knowledge engineering and
expert systems area are encouraged to contact the program chairperson



Greg Kearsley

Courseware, Inc.,

10075 Carroll Canyon Road
San Diego, Ca 92131

(619) 578-1700

Logic, Language, and Cdmp!xtati_on Meetings .

The Stanford Center for the Study of Language and Information and the Association
for Symbotlic Logic are sponsoring two major events for July: a CSLI Summer School (July
8-13) and an ASL Meeting (July 15-19).

Courses for the summer school include the following:

+ Logic programming and Prolog

+ A semantﬁcal reconstruction of Lisp

+ Abstract data types:

+ Situation theory _

" Invited addresses to be presented at the ASL meeting range from resolution and
model theory to the polymorphic typed lambda calculus to automated reasoning applica-
tions.

For further information, write to Ingnd Deiwiks, CSLI Ventura Hall, Stanford CA
94305 (Telex EURTEL 290163 Code 235).

IBM Europe Seminar ‘

The IBM Eurcpe Institute is offering a one-week seminar on Knowledge-Based Sys-
tems and Logic Programming in Lech/Oberlech (Austria) on July 29-August 2, 1885. The
topics will include representation, reasoning, programming methodology. logic program-
ming, and machine learning and concept formation.

* For Further information, write to

J. P. Adam

IBM France, Centre Scientifique
36 Avenue Rayrmond Pomcare
75116 Pans, France

Symposium on Artificial Intelligence in Engineering

A symposium entitled Artificial Intelligence in Engineering will be held at George
Washington University on October 21-23, 1985. Sessions at the symposium will cover Al in
research and development, design, test and evaluation, project and production manage-
ment, military systems, and technology insertion. -Both government and mdustnal
viewpoints will be presented. .

To submit a paper for presentation, send a 50-word abstract by May 30 to

" Dr. Barry G. Silverman
‘Institute for Artificial Intelligence
Gelman Library - Room 636A
George Washington University
Washington, DC 20052

Open Questions
Attempting to answer open questions with the aid of a reasoning program is exciting
and challenging. Such an activity also contributes to the likelihood of automated reason-
ing eventuelly producing a computer program that functions as a high-level reasoning
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assistant. We encourage AAR readers to submit open questions to this newsletter.
Presented below are two open questions sent to us recently.

Combinator Theory (A. Meyer)
The following question was originally raised by Myhill.
Determine whether or not the following set of clauses is satisflable.

(E(K.x).y) =x
£(E(1(S.%).¥).2) = §(f(x.z).1(y. z))
f(x.b(xy)) # f(y.h(xy)) x=y
K»# S

u=w Hgluvwxu)=v
u=w f(gluvwx)w)=x

Omppm

(K and S are constants, and u,v,w,x,y are variables. ) Clauses 1 through 4 are a first-order
~ axiomatization of the untyped lambda calculus, and clauses 6 and 6 are a statement of
- double transitivity.  Meyer claims that if a model exists, then it must be infinite.

_ Latin Squares {C. C. Lindner)
It is known that eny mXn Latin squere defines a quasigroup on 7t elements. A
separation of an nXn. Latin square A =(a;;) into two . Xn matrices B= (bﬁ) and C=(cy)

isdefined by
by=bs=ay and cy=cp=ay

bfj=bj(=ai and Cyj =Cji =5

Whet kinds of conditions on 4 guarantee that there is at least one separation of 4 into a
- pair of commutative quasigroups?

" Note:IfA is symmetﬁc, then a seperation exists (here we have A=B= 0).

Schubett’a Steamroller Problem with Linked UR-Resolutlon
(W. McCune)

E The followmg is a statement of the Steamroller Problem (taken from Chnstoph
' Wa.lther, "Schubert’s Steamroller—A Case Study in Many-Sorted Resolutlon," SEKI memo,

' Korlsruhe, 5/82):

"W_olves, foxes, birds, caterpillars, and snails are animals, and there are some of each of
*  them. Alsa there are some grains, and grains are plants. Every animal either likes to eat
" all plants or all animals much smeller than itself that like to eat some plants. Caterpil-
lars and sneils are much smeller than birds, which are much smaller than foxes, which in
turn are much smaller then wolves. Wolves do not like to eat foxes or grains, while birds
like to eat caterpillars but not snails. Caterpillars and snails like to eat some plants.
Therefore there is an animal that likes to eat a grain-eating animal.” v

The follbwing set of clauses is a denial of the theorem.

1. Wolf(Lupo);

2. Fox(Foxy);

_ 8. Bird{Tweety);

4. Caterpillar(Maggie);
5. Snaxl(Shmey)



6. Grain(Stalky);

7. “Wolf(x1) animal{x1);

8. ~Fox(x1) animal(x1);

9. -Bird(x1) animal(x1);

10. -Caterpillar(x1) animal(x1);

11. -Snail(x1) animal(x1);

12. -Grain(x1) plant{x1);

13. -animal(x) -plant(y) -animal(z) -Smaller(z,x) -plant(w) -eats(z,w) eats(x,y) eats(x,z);
14. -Caterpillar(x1) -Bird(x2) Smaller(x1,x2); '
15. -Snail(x1) -Bird(x2) Smaller(x1,x2);

16. -Bird(x1) -Fox(x2) Smaller(x1,x2);

17. -Fox(x1) -Wolf(x2) Smaller{x1,x2);

18. -Bird(x1) -Caterpillar(x2) eats(x1,x2);

19. -Caterpillar(x1) plant(f1(x1));

20. -Caterpillar(x1) eats{x1,f1(x1));

21. -Snail(x1) plant{f2(x1));

22. -Snail(x1) eats(x1,£2(x1));

23. “-Wolf(x1) -Fox(x2) -eats(x1,x2);

24. “Wolf(x1) -Grain(x2).-eats(x1,x2);

25, -Bird(x1) -Snail(x2) -eats{x1,x2);

26. -animal(x1) -animal(x2) Grain(f3(x2,x1));

27. -animal(x1) -animal(x2) -eats(x1,x2) -eats(x2,f3(x2,x1));

Note: The phrase "grain-eating animel" is interpreted as "animal that eats all grains"
rather than "animal that eats some grains” or "animal that eats grain only." Either-or is
usually interpreted as exclusive or, but here it is interpreted as disjunction. Also, the
sentence "Caterpillars and snails like to eat some plents” is interpreted as "Caterpillars
like to eat some plants, and snails like to eat some plants” rather than "There are some
plants that caterpillars and snails like to eat.” Several different clause sets for this prob-
lem have appeared in the literature.

: The following proof was discovered by the LMA-based theorem prover tp0 using
linked UR-resquhom '

29. -eats(Foxy,f2(Slimey)); (6,24,1,13,7,1,12,6,8,2,17,2,1,21,5,23,1,2)

b7. eats(Tweety,Stalky); (6,12,13,8,8,11,5,15,5,3,21,5,22,5,256,3,5)

68. eats(Foxy, Tweety); (57,13,8,2,21,5,9,3,16,3,2,12,8,29)

62. contradiction; (58,27,8,2,9,3,13,9,3,12,26,8,2,9,3,11,5,15,5,3,21 52252535)

The time required to find this proof was about 2 minutes on a VAX 11/780. The number of
linked UR-resolvents inferred was 82, of which 35 were retained. There were 2663 suc-
" cessful unifications.

Briefly, linked UR-resolution {(linked unit-resulting resolution) (Wos et al,"The
Linked Inference Principle IT: The User's Viewpoint,” in the Proceedings of CADE 7) is a
rule that can be used to infer unit clauses from a set of clauses. It differs from standard
UR-resolution in that more than one nonunit clause can be used to infer a linked UR--
resolvent. Cur implementation of linked UR-resclution has the following features. (F‘ac-
toring, which is required for many non-Horn problems, is not performed.)

* Various options and parameters can be used to limit the length or depth of deductions
that result in linked UR-resolvents, to limit the frequency of use of certain clauses in
deductions, and to limit the kinds of clauses that can be used in deductions.

» A user can require that linked UR-resolvents have certain properties. This kind of res-
 triction is called the target strategy. If the target strategy is being used, then various



paremeters can be used to control it.

s Although the rule is defined as being "unit-resulting,” a contradiction will be reported if
it is discovered.

For the steamroller problem, the target strategy was used in such a way that all
linked UR-resolvents must be positive or negative units in the "eats" predicate. This tar-
get strategy was chosen through semantic considerations: it would seem more helpful to
know who is or is not eaten by whom, rather than, for example, who is or is not a plant.
The number of clauses participating in the deduction of a linked UR-resolvent was limited
to 30. The initial set of support was the single clause Grain(Stalky).

Some comments are in order. First, we solved this problem with standard UR-
resolution also. On this problem, the use of linked UR allows a smaller initial set of sup-
. port than does standard UR-resolution. (This has been the case with a number of other
problems es well.) The initial set of support was the 6 unit clauses; 131 clauses were gen-
erated, of which 124 were retained. There were 26,180 successful unifications. It took
about 11 minutes on a VAX 11/780. Aside from the question of whether or not linked UR
leads to quick proof discovery, its use in this example leads to 2 natural proof. The steps
are large enough to be interesting, but not too large to be grasped. Finally, it should be
noted that in the report cited above, Walther shows that many-sorted resolution is also
effective on this problem.

Comments on Graduated Problems for Testing Equality Reasomng
(D. Lankford)

The following letter was sent by Dalles Lankford in response to the discussion of gra-
duated problems for testing equality reasoning by R. Overbeek and E. Lusk in the AAR
Newsletter #3.

The eerhest published computer proof of problem 1 that I have found is in Huet's
"Experiments with an interactive prover for logic with equality,” Case Western Reserve
University, Jennings Computing Center, Report 1108, 1972, pp. 41-42 and pp. 62-63. The
computer proof required five rounds of resolution and paramodulation, used some equa-

" tions as rewrite rules, generated seventeen clauses during the proof search, and required
about twelve seconds of CPU. Mike Ballantyne and I subsequently derived a complete set
for this problem using completion and commutative-associative completion. The com-
plete set for problem 1 is as follows:

1. [2%]-+(e]

2. [z7-][zx]

3. [ze]-[z]
where congruence classes are defined by the commutative and associative axioms. This
and other computer experiments with the completion method were presented by Ballan-
tyne and me at the 3rd CADE, MIT, August 1977, including complete sets for Abelian
groups and commutative rings. The most impressive solution of problem 2 is contsined
in one of the computer experiments by Knuth and Bendix where the first complete set for -
free groups was derived. (Their paper is found in Computational Problemns in Absiract
Algebras, Pergamon Press, 1970, and in Vol. 2 of Automaiion of Reasoning, Springer-
Verlag, 1983.) Problem 3 elso has a solution by completion, apparently first observed by
Hsiang in his July 1881 paper, "Refutational theorem proving using term remt.mg sys-
tems.” The complete set is , _

1. [z+0]-~»(z]
2. [z+z]-[0]
3. [z-1}-[z]



4. [z=z]~ [=]

5. [z:(y+2)]- [(z-y)+(z-2)]
6. [z-0]-[0]

7. [—=x]-+[z]

. where congruence classes are defined by the commutative and associative axioms for
addition and multiplication. The first computer proof of problem 4 that I know of is con-
tained in Nevins's 1874 JACH paper, required 30 minutes of CPU time, and generated a
search space of over 400 formulas. Subsequently a completion-based theorem prover
implemented by Ballantyne and Lankford solved problem 4 in 30 seconds, and terminated
with & search space of 11 formulas (cf. Bledsoe's "Non-resclution theorem proving” in
IJCAI-75 end AI Jowrnal, 1977.) A variant of problem § is proved by Nevins's computer
progrem; see his 1974 JACHM paper. Concerning the difficulty of problem 6, it depends on
how much information is given to the computer program. In Veroff's computer proof,
much information was provided by the human in the form of considerable clausal infor-
mation, and so the computer proof was relatively easy. By contrast, little information
about the problem was given to his program by Stickel, and so the computer proof was
quite difficult. Moreover, Stickel’s program found & decision algorithm for free x®=1z)-
rings, which is a much deeper result than just showing (z® = ) - rings are commutative.
Because complete sets are decision algorithms, the computer completion proofs for
problems 1, 2, and 3 also found decision algorithms for (z* = e) - groups, groups, and
(z® = z) - rings (i.e., Booclean rings). Whether completion decision algorithms exist for
(z3 = e), groups and ternary Boolean algebras {problems 4 and 5) appears to be
currently unknown. In my opinion, these are two very important open problems in
applied equational logic. Although it is open whether complete sets exist for problems 4
and 5, problem 4 is known to be decidable. Groups satisfying ™ = g are called Burnside
groups, and have word problem decision algorithms for n =2, 3, 4, and 6, and for odd n=
665, see Adian’s The Purnside Problem and Identities in Groups, Springer-Verlag, 1979,
p. 250. It is unknown whether tractable computer implementations of the approach
described by Adian can be developed. .

Logic Problems
(from C. Morgan and solved by E. Lusk and R. Overbeek)

In the last AAR newsletter, we included the following logic problems from Charles
Morgan: B
1. Pxi(y.x))

2 PU(xi(y.2).i(i(xy)i(x2))
3. P{(i(n(x).n()).i(y,x)))
4. I P(i(x,y)) & P(x) then P(y)
Roughly speaking. P means "is provable”, i means "implies”, and n means "not". Thus
Axiom 4 prepresents the inference rule of modus ponens.
Problem 1: For all x, P(i(x,n{n{x)))).
Problem 2: For all x, P(i(n{n(x)),x)).
Harder problems arise when Axiom 3 above is replaced by
8. Pi(i(y.x).i{n(x),n(yN))
So the next problem is:
Problem 3: With axiom 3 replaced by axiom 3, P(i(x,n(n(x)))) for all x.

 Here are some of the experiments we did: the first is a proof of Theorem 2, and the
second is a proof of Theorem 1 from Theorem 2.

1 P(i{x1,i(x2,x1)));



-8-

2 P(i(i(x1,i(x2,x3)).i(i(x1,x2),i(x1,x3))));

3 P(i(i(n(x1),n(x2)),i(x2,x1)));

4 I P(i(x1,x2)) & P(x1) then P(x2).

& -P(i(n(n(a)).a));

8 P(i(x1,i(i(n(x2),n(x3)),i(x3,x2)))); 3 ¢ 1
12 P(i(i(x1,x2),i(x1,x1))); 2 4 1

18 P(i(i(x1,i(n{x2),n(x3))),i(x1,i(x3,x2)))); 2 4 8
18 P(i(x1.x1)); 12 4 1

20 P(i(x1,i(x2,x2))); 18 4 1

21 P(i(i(i(x1,x2),x1),1(i(x1,x2),x2))); 18 4 2
655 P(i(i(i(x1,x1),x2),x2)); 21 4 20

84 P(i(x1,i(i(i(x2,x2),x3),x3))); 65 4 1

7?9 P(i(i(x1,i(i(x2,x2),x3)),i(x1,x3))); 64 4 2
268 P(i(n(x1).i(x1,x2))); 16 4 1. _

208 P(i(n{n(x1)),i(x2,x1))); 268 4 18

818 P(i(n(n(x1)),x1)); 298 4 79

328 null. 318 5

4 ¥ P(i(x1,x2)) & P(x1) then P(xZ)
& -P(i(a,n(n(a))));

6 P(i(n(n(x1)).x1));

9 P(i(x1,n(n(x1)))); 6 ¢ 3

0 null; 95

An NFL Scheduling Problem
(H. Mills)
Here is an innocent-sounding problem that was given to Harlan Mills by the National
Football League in 1970: "For the 1970 season, 26 teams had formed a league committed
‘to 182 games over a 14-week season. The League was divided into two 13-team confer-
ences, each with divisions of 4, 5, and 4 teams. Each team was to play 7 games at home
with other specified teams, and 7 games away with still other.”

There were other complications, such as games to be played within a division, inter-
conference games, and special deals, but the basic problem is clear: 182 games to be

- scheduled in 14 weeks.

The NFL did arrive at a sclution, thanks to Harlan Mills. Bill McCune, too, has solved
the problem interactively. Can you discover an effective algorithm to solve the problem?
(Note: This deceptively simple problem has been described as "what may very well be the
most complex, non-computerized, man-made jigsaw puzzle ever attempted.")



