?Ot\ofg gg -40O
&/ fes

ASSOCIATION FOR AUTOMATED REASONING
NEWSLETTER
No. 9 January 1988

From the AAR President, Larry Wos...

If you wish to gain fame and fortune (well, perhaps not fortune) by some (legal) means
other than writing papers, the Journal of Automated Reasoning is looking for people to write
book reviews. Send your name, address, and email address (and a list of your area of exper-
tise) to Rick Stevens, Mathematics and Computer Science Division, Argonne National Labora-
tory, Argonne, IL 60439-4844, email stevens@anl-mcs.arpa.

Conferences

Southeastern International Conference on Combinatorics, Graph Theory, and Computing

The 19th Southeastern International Conference on Combinatorics, Graph Theory, and
Computing will be held at Louisiana State University in Baton Rouge, LA, February 15-19,
1988. A special session on February 17 will focus on issues of implementation, verification,
and portability. For further information, write to Professor Clifton E. Ealy, Jr., Department of
Mathematics and Computer Science, Northern Michigan University, Marquette, Michigan
49855,

EMCSR 88

The Ninth European Meeting on Cybemetics and Systems Research will take place in
Vienna, April 5-8, 1988. The topics include "Robotics and Flexible Manufacturing,” "Artificial
Intelligence,” and "Expert Systems and Approximate Reasoning." A half-day tutorial in
artificial intelligence is also planned. For further information write to EMCSR 88 - Secretariat,
Osterreichische Studiengesellschaft fur Kybernetik, A-1010 Wien 1, Schottengasse 3, Austria.

CONTROL 88

The Computing and Control Division of the Institution of Electrical Engineers, London, is
organizing a conference on control, computing, signal processing, and instrumentation systems.
The conference will be held April 13-15, 1988, at the University of Oxford, UK, and will
include discussion of the following topics:

e artificial intelligence techniques e fault diagnosis
e man-machine interfaces e robotics

-2 -

Preceding the conference will be a two-day international workshop on Robot Control: Theory
and Applications.

For further information write to Conference Services, IEE, Savoy Place, London WC2R
OBL, United Kingdom.

CADE-9

The 9th International Conference on Automated Deduction will be held at Argonne
National Laboratory on May 23-26, 1988, in celebration of the 25th anmiversary of the
discovery of the resolution principle at Argonne in the summer of 1963. For further informa-
tion, contact

Ewing Lusk and Ross Overbeek, chairmen
CADE-9

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439-4844

New Journal

A new journal, Medical Expert Systems, will begin publication in July 1988. Devoted to
medical knowledge engineering, the journal will feature original contributions, tutorials, discus-
sions, and reviews on

e Al and medical decision-making

¢ Formalizing medical knowledge and skill

e Expert system tools in medicine

¢ Building and evaluating expert systems in medical practice

e Physician-oriented interfaces and environments

e Al and medical databases

e Intelligent instruments and text books

e Expert systems in medical education

e Ethical, social, and economic problems of medical expert systems
e Al news, software, and hardware news

The journal will be published six times a year and will cost $34 for individuals, $68 for insti-
tutions. For further information write to Burgverlag, P.O. Box 1247, 4542 Tecklenburg, West
Gemany.

-3-

New Books

Advances in Artificial Intelligence

Advances in Artificial Intelligence is the official publication of the 2nd International
Conference on Artificial Intelligence held in France in December 1986. The book compriscs
22 papers covering such topics as knowledge acquisition, natural language, reasoning, speech
recognition, and man-machine communication. The 328-page book is published by Kogan
Page Lid. of London.

Automated Reasoning: 33 Basic Research Problems

Automated Reasoning: 33 Basic Research Problems by Larry Wos, published by
Prentice-Hall, offers problems for research at the doctoral level or greater. The author states
that solving any of these problems will result in a substantial increase in the power of
automated reasoning programs. Of particular interest, Chapter 2 presents a detailed discussion
of the obstacles to effective reasoning, for a computer program or a person. Equally valuable,
Chapter 6 presents a rather extensive collection of sets of clauses to permit one to attack ques-
tions from a variety of fields in mathematics and logic, specific problems for testing one’s pro-
gress in attempting to solve one of the 33 posed problems, and solutions to the test problems.
This inexpensive book would serve well as a primary text for research topics in automated rea-
soning and, especially because of Chapter 2, would serve well as a secondary text in a course
in artificial intelligence.

The Encyclopedia of Artificial Intelligence

John Wiley & Sons has published a new two-volume reference entitled The Encyclopedia
of Artificial Intelligence. Over 200 experts have covered virtually every aspect of the field of
Al including blackboard systems, computer chess methods, binary resolution, and causal and
default reasoning. Of particular note are the more than 5000 literature references and the
extensive cross-referencing by subject and key word.

Automated Theorem Proving

In the second edition of his book Automated Theorem Proving, W. Bibel presents a
comprehensive treatment of the state of the art in inferential technology based on classical
logic. The book combines a rigorous formal style of presentation with extensive illustrative
discussions and a number of exercises of increasing difficulty. Thus the book is suited as a
text as well as a standard reference book.

-4 -

An Obvious Solution for a Non-Obvious Problem
(Christoph Walther)

In AAR Newsletter no. 6, Pelletier and Rudnicki discussed problems that are difficult for
automated theorem provers and people, not because of size but because of their logical and
conceptual complexity. They gave the following example of such a problem [1]:

() {=PG&y), —P(yz), (x2)}
@ {(=Q(xy), =Q(yz), Qx2)}
(3 {—-Q&y), Qyn)}

@ {P(xy), Q(xy)}

(5) {—P(ab)}

(6) {—Q(cd)}

The clauses 5 and 6 are from the negated conclusion of the statement, where a, b, ¢, and d are
Skolem constants. THINKER, the natural deduction system described in [2], required 1808
lines in its proof of this problem and used 115.6 seconds on CPU time on an Amdahl 5860
[1]. Pelletier and Rudnicki discussed the concept of "non-obvious problems" of which the
given one is an instance. Obviously it was THINKER’s behavior that caused them to classify
the given problem in particular and "non-obvious problems” in general as a challenge for
automated theorem provers.

We think, however, that there is another quite simple (and also quite obvious) reason why
an automated theorem prover based on some kind of breadth-first search (even if improved by
some strategies and heuristics) has difficulties with this problem or even fails in finding a solu-
tion for it.

The symmetry axiom (3) for the predicate Q causes a naive proof procedure to expand
the search space with a great amount of useless and redundant clauses. On computation of
generation N+1, each clause of generation N containing a literal with predicate letter Q is
recomputed with arguments interchanged. Hence, on computation of generation N+2, each
clause of generation N that contains a literal with predicate letter Q has to be recomputed. As
a consequence, the search space grows very fast.

But there is also a well-established and quite obvious remedy for this kind of problem.
With subsumption, the symmetric closure of Q is still computed, but the recomputation of cer-
tain clauses of generation N during the computation of generation N+2 is prohibited; that is,
these clauses are removed by subsumption immediately after their generation.

We gave the problem to the Markgraf Refutation Procedure (MKRP) a connection
graph-based proof procedure described in [3]. The system initially was given 35 K cons-cells
to store the connection graph and was stopped manually when it asked for more memory.
Using 134 seconds of CPU time, the system had computed 103 resolvents and generated a
search space of 1676 resolution links so far on this unsuccessful run. For the second run, sub-
sumption was used. After generation of a search space of 672 resolution links and 62.2
seconds of CPU time, the empty clause was found with 69 resolution steps.

This result still can be improved by a very simple idea. The symmetry axiom for Q (i.e.,
clause 3) is removed from the set of clauses and is incorporated into the unification procedure

-5-

instead. Now, for instance, {Q (xz), Q(cd)} has two most general unifiers (under symmetry):
{x «c,z «d} and {x «d, z « ¢ }. As a consequence, we have to compute two resolvents
from the clauses 2 and 6, namely, R; = { = Q (cy) , =Q (yd) } and R, = { =Q (dy), =Q(yc)}.
But R, is subsumed by R; because the empty substitution is a most general unifier (under sym-
metry) both for { —Q(cy), —Q(yc) } and for {—Q(dy), —Q(yd)}, and therefore R, can be
removed from the clause set. Note that without built-in symmetry, R;, which is computed in
the first generation, does not subsume R,, which is computed in the second generation, and
both clauses remain in the clause set. With subsumption and built-in symmetry, the MKRP
system used 31.1 seconds of CPU time to generate a search space of 380 resolution links
before the empty clause was found after 43 resolution steps.

For all runs we used a 3 1/2-year-old version of the MKRP system running on a SIE-
MENS 7760 machine. All runs were with the set of support strategy, with clauses 5 and 6 as
the set of support.

References

[1] Pelletier, F. J., and Rudnicki, P., "Non-Obviousness," AAR Newsletter no. 6, September
1986.

[2] Pelletier, F. J., "Completely Non-Clausal, Completely Heuristically Driven, Automatic
Theorem Proving," Technical Report TR82-7, University of Alberta, 1982.

[3] Eisinger, N., and Ohlbach, H. J., "The Markgraf Karl Refutation Procedure (MKRP),"
Proceedings 8th Conference on Automated Deduction, Lecture Notes in Computer Science, Vol.
230, 1986.

PEANQ and the Steamroller Problem
(John Pollock)

J. Pollock has developed an automated theorem prover in first order arithmetic. The
prover, called PEANO, begins with Peano’s postulates and proves moderately sophisticated
theorems. A relatively novel feature of the system is that it is completely automatic, proceed-
ing entirely without human direction. The system does not try to prove hard theorems "from
scratch.” Rather, it stores its theorems in memory and uses previous theorems in the course of
proving new ones. If it does not have what it needs to prove a new theorem, it makes conjec-
tures and tests them against simple models; if they survive the test, it then tries to prove them
as lemmas. This approach may lead to the generation of new conjectures and the attempt to
prove new lemmas, and so on.

As a rough indication of its power, PEANO does the Schubert steamroller problem (in
nonclausal form) in about 1.5 minutes running on a Compaq 386 (this is running uncompiled
and unoptimized).

PEANO is an offshoot of work whose ultimate objective is the design of a general-
purpose automated reasoning program that does "defeasible reasoning." Currently, Pollock has
developed a preliminary version of such a program, called OSCAR.

-6 -

Solution to Shubert’s Steamroller Problem
(Ronald W. Satz)

R. Satz has adapted Prof. Umrigar’s F-Prolog system to microcomputers, written an user
interface, and successfuily tested his Prolog theorem prover program on Shubert’s Steamroller
Problem. The problem took 88 minutes to solve on a Leading Edge Model M (8088-2) and 13
minutes on a Tandy 4000 (80836). Below is a brief explanation of how Satz’s theorem-prover
works, followed by a statement of the Steamroller Problem, the input clauses used, and the
resulis.

EXPERT THINKER is a theorem prover designed for MSDOS microcomputers (with
640K of internal memory and a floppy or hard drive). Written and compiled in Arity Prolog
and Turbo Prolog, it is an adaptation of the DEC-10 Prolog program called F-Prolog by Pro-
fessors Umrigar and Pitchumani (Proc. 1985 Symposium on Logic Programming, Boston,
Mass., July 1985, pp. 40-47). F-Prolog includes unification with the occurs check, true nega-
tion, the capability to use non-Hom clauses, the meson reduction and extension operations, and
staged depth-first search. EXPERT THINKER adds an easy-to-use operator interface to this
system.

Problem Statement in English: Wolves, foxes, birds, caterpillars, and snails are animals, and
there are some of each of them. Also, there are some grains, and grains are plants. Every
animal likes to eat either all plants or all animals much smaller than itself that like to eat some
plants. Caterpillars and snails are much smaller than birds, which are much smaller than foxes,
which in turn are much smaller than wolves. Wolves do not like to eat foxes or grains, while
birds like to eat caterpillars but not snails. Caterpillars and snails like to eat some plants.
Therefore there is an animal that likes to eat a grain-eating animal.

Input Clauses:

aX) <= wX).
aX) <= f(X).

a(X) <= b(X).

aX) <= c(X).

a(X) <= s(X).

w(wl),

f(f1).

b(b1).

c(cl).

s(s1).

g(gl).

p(X) <= g(X).

(eX,Y) or e(X,2)) <= a(X) & p(Y) & a(Z) & p(V) & m(Z,X) & e(Z,V).
mX,Y) <= ¢(X) & Y).
m(X,Y) <= s(X) & b(Y).
m(X,Y) <= (X) & f(Y).
mX,Y) <= fX) & w(Y).
e(X,Y) <= w(X) & f(Y).
e(X,Y) <= w(X) & g(Y).
e(X,Y) <= b(X) & s(Y).
e(X,Y) <= b(X) & c(Y).
p((X)) <= c(X).
e(X,h(X)) <= c¢X).

e(X,h(X)) <= c(X).
paX)) <= s(X).
e(X,i,X)) <= s(X).

Solutions: a(fl) & a(bl) & g(gl) & e(fl,bl) & e(bl,gl)

An Indexing Mechanism for Finding More General Formulas
(Bill McCune)

Say we have a large set of formulas, and we wish to quickly access the members that are
more general than or identical to a given formula. This note presents a mechanism for accom-
plishing that task.

The applications for which we are currently using the indexing mechanism are forward
subsumption and demodulation. In forward subsumption, one must determine if a given literal
is subsumed by any literal in the database. (If nonunit clauses are involved, then one must
also attempt various mappings of the literals, but that is beside the point of this note.) In
demodulation, one must find the first rewrite rule (or the set of rewrite rules) that can be used
to rewrite a given expression. One important aspect of the new indexing procedure is that the
matching substitution is constructed as the indexing occurs. In contrast, other indexing
mechanisms return formulas that are potential matches; then a routine must be called to verify
the-match and construct the substitution.

The subsumption index for the literals (x and y are variables)

P(e(x,x))

Ple(x,e(x,e(x,x))))
Ple(x.e(x.e(y.y»)
Ple(x,e(y.e(y,x))))
Pe(e(x,y).e(y.x)))
P(e(e(e(x,y),%),y))

SR WN e

is the tree (leaves are labeled with the literal number)

P
|
e
/N
X e
/1 P\
X e X e
1 /1 | \
Xy |y X
/ ! ! [
e e e y
/ N\ | ! [
X ¥y ¥y ¥y X
! o ! |
X 'y x X y
2 3 4 5 6

The index tree has the following properties: (1) each path from the root to a leaf represents a

-8-

literal; and (2) no node has more than one child with the same label. (This ensures a max-
imum amount of sharing.) '

The indexing routine is given a literal and uses a backtracking algorithm that searches the
tree from left to right. The backtrack points (choice points) are the variable nodes. When an
unbound variable node is visited, the variable is bound to the appropriate term in the given
literal. When a bound variable node is visited, the appropriate term in the given literal is
checked for identity with the binding. Failure occurs when no child (or no more children)
match with the appropriate term in the given literal. Failure causes backtracking to the most
recent variable node.

Note that the sharing of the initial segments of the literals in the tree allows some of the
actions of binding to be shared. For example, the literal P(e(b,e(b,e(b,b)))) matches literals 2
and 3. The first occurrence of x on the paths to 2 and 3 is the same; the given literal can be
matched with both 2 and 3 binding x only once.

We use a similar scheme for finding rewrite rules to apply when demodulating a given
expression. For the set of rewrite rules

Li-> Ri,

the Li's (left-hand sides of the rewrite rules) are indexed in the same way as the literals are
indexed for forward subsumption. The Ri’s are stored in the leaves of the index tree, so that
when an Li has been matched with 2 given term, the current substitution can be applied to the
Ri to build a replacement for the given term. If the rewrite rule is conditional and the instance
fails the conditions, backtracking occurs.

A variation must be used if one wishes to use an ordered set of rewrite rules or an
ordered set of subsuming literals, because maximum sharing imposes some order on the index
tree. In the preceding subsumption example, if literal 1 is o be tested between literals 5 and 6,
the index tree can be built with that order—but because the amount of sharing is reduced, more
space is needed to store the tree, and more time may be required to search the tree.

Performance of the indexing mechanism seems to be very good, especially for forward
subsumption, where we have seen speedups as high as 20 over our previous techniques. In
one example involving deeply nested equivalential calculus literals, 48 seconds (on a SUN
3/260) were required to test 19,000 literals against a database that averaged 6,000 literals
(about 6000 were subsumed). A database of 13,000 literals took 8.5 seconds to construct and
required about 1 megabyte of memory. The technique also performs well for large sets of
small literals, including sets of ground literals.

For the demodulation application, the speedups are 3-4 over our previous techniques for
most problems. It appears that the overhead for the indexing mechanism is small, because for
very small sets of rewrite rules, performance is virtually the same as the performance of a
similar procedure that does not use indexing.

We have extended the technique to handle full unification, but the results have been
disappointing—a lot of complexity is introduced into the procedures, the index requires an
enormous amount of memory (more data is stored in each node), and the time performance is
not much improved. We also intend to investigate the application of Prolog-like technology to
compile the indexing/matching trees. A technical report is being prepared.

