ASSOCIATION FOR AUTOMATED REASONING
NEWSLETTER
No. 10 April 1988

From the AAR President, Larry Wos . . .

One of the stated objectives of AAR is the exchange of information and the enhancement
of communication. I am pleased to say that the newsletters do, in fact, in part fulfill this
objective. In that regard, please note the item on mini-conferences sent to us by Frank Brown.

Conferences

Workshop on Automated Reasoning

The seventh annual workshop on automated reasoning will be held at Argonne National
Laboratory on June 9-10, 1988. The workshop will consist of a set of lectures that introduce
the elements of automated reasoning and that focus on a number of applications including that
concerned with answering open questions. The fee will be $70, which will cover the cost of a
written copy of the lectures and two books on automated reasoning: Automated Reasoning:
Introduction and Applications by Wos, Overbeek, Lusk, and Boyle, and Automated Reasoning:
33 Basic Research Problems by Wos. We must limit the number of attendees to approxi-
mately 60. If you are interested, please call Larry Wos at Argonne, 312-072-7224, or at his
home, 312-493-9767.

CADE-9

The Ninth International Conference on Automated Deduction will be held at Argonne
National Laboratory on May 23-26, 1988. This year’s meeting celebrates the twenty-fifih
anniversary of the discovery of the resolution principle at Argonne. Among the main attrac-
tions are the following:

e more than 60 presentations on various aspects of automated deduction

e invited talks from Bill Miller (SRI), J. A. Robinson (Syracuse Umverslty) and L. Wos
(Argonne National Laboratory)

e facilities for demonstration of and experimentation with automated deduction systems

e tutorials in special areas including verification, rewrite systems, connection graphs, and
constraint logic programming

For further information and registration materials, call Mrs. Miriam L. Holden, Director,

Conference Services, Argonne National Laboratory, (312) 972-5587.

AIENG 88

The Third International Conference on Applications of Artificial Intelligence in Engineer-
ing will be held at Stanford, California, on August 8-11, 1988. The purpose of the conference
is to provide an international forum for the presentation of work on the state of the art in appli-
cations of artificial intelligence to engineering. Areas include representation, problem solving,
constraint reasoning, learning, robotics, diagnosis and evaluation, and tutoring.

For further information, write to AIENG 88 Conference, Computational Mechanics Insti-
tute, 25 Bridge Street, Billerica, MA 01821.

IEEE Symposium on the Foundations of Computer Science

The 29th Annual IEEE Symposium on Foundations of Ccmputer Science will be held at
the Crowne Plaza Hotel in White Plains, New York on October 24-26, 1988. Suggested topics
include

¢ Algorithms and Data Structures

s Cryptology

¢ Formal Languages and Automata
e Logic and Semantics of Programs
¢ Robotics and Machine Learning

Persons wishing to submit a paper should send 15 copies of an extended abstract by May 9 to
the program chair Dexter Kozen, Department of Computer Science, 4126 Upson Hall, Comell
University, Ithaca, New York 14853-7501.

Mini-Conference on Automatic Deduction

A mini-conference on automated deduction is being organized. The focus is o be on
new approaches to automatic deduction based on non-traditional approaches—topics not well
represented at such conferences as CADE. These non-traditional frameworks might include
both theoretical and experimental research on proof theory and deduction systems for the fol-
lowing non-classical logics and extensions to first order logic:

modal, nonmonotonic, default, tense, and action logics
circumscription

the frame problem

intentional reasoning

metatheory

reflective reasoning

fixed points

closed world assumption
non-Cantorean set theories
quantifier elimination

possibility, probability, and ontology

Those interested in helping to organize or participate in such a miniconference are invited
10 contact Dr. Frank M. Brown, Dept. of Computer Science, University of Kansas, Lawrence,
Kansas 66045, (913)-864-4482.

FGCS ’88

A call for papers has been issued for the International Conference on Fifth Generation
Computer Systems 1988, to be held in Tokyo on November 28-December 2, 1988. The focus
of this year’s conference is on knowledge information processing, logic programming, and
parallel architectures. Specific topics of interest include

Formal semantics
Computation models

Theory of parallel computation
Automated reasoning

Logic/functional/object-oriented programming
Parallel programming languages and methodologies
Program verification and debugging
Implementation techniques

Inference machines
Al and VLSI architectures
Knowledge-based machines

Natural language understanding and machine translation
Real-time Al systems
Knowledge representation and acquisition

Authors should send six copies of manuscripts to Prof. Hidehiko Tanaka, FGCS’88 Program
Chairman, ICOT, Mita Kokusai Bldg. 21F, 1-4-28 Mita, Minato-ku, Tokyo 108, Japan. Papers
must be received by May 18, 1988.

COLOG-88

An international conference on computer logic is scheduled for December 12-16 in Tal-
linn, Estonia, USSR. Topics of interest include

applications of deductive systems
deductive program synthesis and analysis
theorem proving

logic programming

computer experiments in logic-related fields

Papers should be sent to G. Mints, Institute of Cybemetics, Estonian Academy of Sciences,
Akadeemia tee 21, Tallinn 200108, USSR.

-4 -

Non-Obviousness — One More Time
(from Gerald Peterson, McDonnell Douglas Corporation)

The following "non-obvious" theorem has been discussed in AAR newsletters 6, 7, and

N

—P(xy) —P(yz) P(xz)
—Q(xy) —Q(yz) Q(x2)
—Q0y) Q0%)

P(xy) Q(xy)

—P(ab)

—Q(cd)

If one compares the results in these previous discussions, one discovers that this theorem
is a great deal more non-obvious to some theorem provers than it is to others. Peterson
decided to attack the problem to see how obvious it was to a mathematician and to see whether
something could be learned about automated mathematics.

One of the first things one ought to notice about this problem is that its Herbrand
universe is just {ab,c.d} and its Herbrand base contains 32 elements. These are severe con-
straints which should be exploited in the proof.

Essentially, the problem is to show that there is no way to define P and @ relations
between all pairs of elements taken from (a,b,c.d} in a way such that all six of the clauses are
satisfied. Peterson’s approach was to build two matrices, labeled on the rows and columns
with a,b,cd. One of these indicated which P and Q relations held, and the other indicated
which did not hold. In the beginning these matrices were as follows:

S e ad e

Holds ‘ Does not hold
a b ¢ d a b ¢ d
a a P
b b
c c Q
d d

Now clauses 1 to 4 are used to derive additional entries for the matrices. This leads easily to

Holds Does not hold
a b ¢ d a b ¢ d
al Qi@ a P
b Qi@ b
c PP c Q
d P|P d Q

-5.

Every interpretation on the Herbrand base will assign Q(ca) either T or F. If we try T
and get a contradiction, and try F and get a contradiction, we are finished. Each of these was
tried by filling in the appropriate slot and then continuing to derive consequences as before.
Each led in a few steps to a contradiction, so the proof was complete.

This idea can be incorporated into a theorem prover. All clauses that are not ground
units are used only as operators to produce additional ground units. The operation is per-
formed by matching all but one of the literals in the clause with an opposite ground unit. As
we proceed, either a proof will be generated or there will come a time when additional ground
units cannot be generated. When generation ceases, select some ground unit that has not been
generated and add it to the set of ground units and continue generating. Add additional
selected ground units if necessary as the proof proceeds. When a proof is generated, back up
to the point that the last selected clause was added, add its negation instead, and continue gen-
erating, and so on. If the tree that is being generated can be completed with a proof at each
leaf, then the proof is complete. This approach leads to the following 18-step proof of the ori-
ginal problem:

7. Q(ab) 4,5

8. Q(ba) 3,7

9. Q(ca) assumed 9’. —Q(ca) opposite assumed
10. Q(cb) 2,79 10’. =Q(ac) 3,9
11. =Q0(a.d) 2,6,9 11°. P(ac) 4,10°
12. =Q(bd) 2,6,10 12'. =P(ch) 1,5,11"
13. -Q(db) 3,12 13°. Q(ch) 4,12
14. P(db) 4,13 14’. Q(ca) 2,8,13°
15. P(ad) 4,11 15°.0 9,14’
16. P(ab) 1,14,15 ’

17.0 5,16

Peterson notes that this approach is probably going to work only when the number of ele-
ments in the Herbrand base is small. He adds two morals:

1. Constraints existing in theorems ought to be exploited by theorem provers.

2. Present-day provers could be improved by incorporating several proof methods and building
a front-end discriminator that would select the method based on features of the theorem.

The Logic of Skolem Functions: A Subtle Construction and a Subtle Error
(from Joseph S. Fulda, Hofstra University)

The use of Skolem functions in resolution-refutation proofs is typical Al: it works, so we
use it. But replacement of an existentially quantified variable with a Skolem function does not
result in a perfect translation. This is evident when considering the negation of an existentially
quantified expression: —(Ex)Px gives the clause —Px, not —Pj, even though we would replace
(Ex)Px with Pj. This is because a function has exactly one output, while a variable bound to an
existential quantifier has at least one substitution instance. Yet it works, since in any given
existentially quantified expression no one can be sure that the number of substitution instances
of the existentially bound variable exceeds 1 (and if one was sure, one should not use just a
single existential quantifier). Thus, replacing existence with unique existence—something of a

-6 -

mathematician’s nightmare—in the limited context of resolution theorem proving does no
harm.

The following example of a resolution-refutation proof brings these issues into relief.

Premise 1.
Every person with a lover is a romantic.

Clause 1.
x)(Px = (Ey)Ixy - Rx)) —Px v —Lxf(x) v Rx

Premise 2.
Jonathan has Kim for a lover.

Clause 2.
Ljk

Clause 3.
Pj (implied premise)

Conclusion.
Jonathan is a romantic.

Clause 4.
—Rj (denial of conclusion)

The unification of —Lxf(x) with Ljk is often explained with something akin to Digricoli’s
RUE (resolution by unification and equality) rule: £j) must equal & because f(j) is a function,
and if Ljk is given, then Ljf(j) must equal Ljk (the negation here doesn’t change the argument).
The argument seems reasonable but is, in fact, unsound—precisely because we dared replace
existence with unique existence. Yet this example (and isomorphics) may well be unique.

What, then, of the original argument about Jonathan? Is it valid? Yes, and when
translated properly, a resolution-refutation proof is obvious. The first premise should have
been translated (x)(Px — ((Ey) (Lxy) — Rx); that is, a scoping error was made. The error is sub-
tle in the sense that the scope of the quantifier matters, even though the predicate involved has
no occurrence of the quantified variable. The subtlety disappears, however, if the implication
is replaced by its definition —...v... or if exportation is used to rewrite the proposition.

Replacement by its definition shows, in particular, that it is the universal quantifier that is
indicated, giving a clausal form of —Px v —Lxy v Rx. It also reminds us of the generality that
(Ex)(Px — Q) is different from (Ex)(Px) — Q and that the latter is, indeed, (x)(Px — Q) and that
this generality holds for all Q without a free occurrence of x. Using —Px v —Lxy v Rx allows a
derivation of nil in just three steps, and without elaborate justifications.

Acknowledgments: The author thanks Professor M. Levin for his helpful and clarifying com-
ments. '

-7 -

Some Fixed Point Problems in Combinatory Logic
(from Bill McCune and Larry Wos, Argonne National Laboratory)

Raymond Smullyan’s book To Mock a Mockingbird (Knopf, 1985) contains a wealth of
problems in applicative systems and combinatory logic. Most can be attacked in first-order
logic with equality, and some of those provide quite a challenge for theorem-proving programs.
This note contains a few fixed point problems from Smullyan’s book, and many additional
fixed point problems.

Some basic proper combinators and their equations (reduction rules) are

Sxyz = x2(yz) Oxyz = y(xz)
Kxy=x Qixyz = x(zy)
Ix=x Txy =yx
Bxyz = x(yz) Cxyz = xzy
Lxy = x(yy) Vxyz = zxy
Mx=xx Hxyz = xyzy
Wxy = xyy Nxyz = xzyz
Wixy = yxx Uxy = y(xxy)
Loxy = y(xx) Saxyz = xz(yy)
Oxy = y(xy)

Notation. Variables are x, y, and z. There exists an implicit binary operator ‘apply’, and left
association is assumed when parentheses are omitted. For example, the clause

a(a(a(S.x).y).z) = a(a(x.z),a(y.z))

might be used to present the first equality in the preceding list to a theorem prover.

We focus on proving that one or both of the following fixed point properties holds, given
a set of proper combinators. The weak fixed point property is

Yy3e = yo),
and the strong fixed point property is

38V x(Ox = x(6x))
(® is a fixed point combinator). Note that the weak fixed point property follows immediately
from the strong fixed point property by letting s be ®y, for any fixed point combinator ®. The
respective denials (Skolemized and in clause notation) of the two fixed point properties are

x # a{fx) (denial of weak fixed point property)

and

a(yf) # a(fk).af))) (denial of strong fixed point property)

-8-

For example, to prove that the weak fixed point property holds for {M, B}, a program could
refute the following set of clauses.

a(M.x) = a(x.x)
a(a(a(B x),y).2) = a(x.a(y,z))
x # a(fx)

Problems (some are easy, some are hard)
Prove that the weak fixed point property holds for each of the following sets.
{L}v {Mv B}’ {B’ LZ}v {31 S2}’ {01 Ql}

Prove that the strong fixed point property holds for each of the following sets. (Also prove
that the weak fixed point property holds for each of the following sets).

{U}, {8, L}, {L, 0}, {Q, M}, (B, M, L}, {B, M, T}, {W, Q, L}, {B, S, T}, {B, S, C}, {B, M,
v}, {B, 0, M}, {B, N}, {B, M, C}, (B, W}, {B, W'}, {B, H}, (B, N}, {S;}}
vs w4S

New Book

A new textbook entitled Artificial Intelligence: A Knowledge-Based Approach, by M.
Firebaugh, has been published by Boyd and Fraser. Of particular interest to AAR newsletter
readers is Chapter 5, "Automated Reasoning." Other features include

e a brief introduction to LISP and PROLOG,

¢ emphasis on building expert systems, with examples

e a comprehensive introduction to robotics

e an introduction to massively parallel architectures for Al

