ASSOCIATION FOR AUTOMATED REASONING
NEWSLETTER
No. 14 December 1989

From the AAR President, Larry Wos...

This last newsletter for 1989 features two articles contributed by Hantao Zhang and his
colleagues. We are delighted to report on his research, and we encourage others to follow his
lead. We are especially interested in collecting new challenge problems that our readers may
attack with various automated reasoning programs. Such problems are essential to evaluating
progress and generating new ideas.

International Symposium on Artificial Intelligence and
Mathematics

The International Symposium on Artificial Intelligence and Mathematics will take place
January 3-5, 1990, at Fort Lauderdale, Florida. It is the first of a biennial series featuring
applications of mathematics in artificial intelligence as well as artificial intelligence techniques
and results in mathematics. Among the invited presentations are the following:

Martin Davis, Courant Institute, “Remarks on the Foundations of Artificial Intelligence”
Zohar Manna, Stanford, “Automated Deduction—Techniques and Applications”

Drew McDermott, Yale, “Numerical Methods in Artificial Intelligence”

Alan Robinson, Syracuse, “Artificial and Natural Proofs in Mathematics”

Leslie Valian, Harvard, “Computational Learning Theory”

For more information, contact the Symposium Organizing Chair, Dr. Frederick Hoffman,
Florida Atlantic University, Dept. of Mathematics, P.O. Box 3091, Boca Raton, Florida 33431-
0991, (407) 367-3345, email hoffman@servax.bitnet.

Non-Obviousness — Last Time 7
Deepak Kapur (SUNY at Albany) and Hantao Zhang (University of Iowa)

The so-called non-obvious problem introduced by Pelletier and Rudnicki in AAR Newslet-
ter 6 has been extensively discussed (see also Newsletters 7, 9, and 10), with the most recent
solution given in Newsletter 11. We had, in fact, solved the problem quite easily and automat-
ically (i.e., with no guidance to the theorem prover such as providing a set of support or using
any special technique such as symmetry) with the aid of the theorem prover RRL (Reuwrite
Rule Laboratory) [3] soon after the problem was first posed. At that time, we did not see any
need to publish the proofs in the AAR newsletter because of the obviousness of the proofs and
a lack of much challenge in the problem.

We now feel that it might be instructive for the readers to study the proofs obtained on
RRL using the Grébner—basis method developed by Kapur and Narendran [2] and the clausal
superposition method developed by the authors [5]. These two proofs are different (at least in
their appearance) from those presented previously in the above cited newsletters.

The input of the problem consists of the following six clauses:

(1) ~q(c,d) (3) p(z,y) V q(z,y) (5) g(z,2) V ~q(z,y) V ~q(y, 2)
2) ~pla,b) (4) g(z,¥) V ~q(y,z) (6) p(z,2) V ~p(z,y) V —p(y, 2)

Like Hsiang’s method [1], the Grobner—basis method needs to transform formulas into
polynomials over a Boolean ring (using the tworules ~z —z@®landzVy — (zAy) Dz Dy,
where @ denotes the ezclusive-or) and then transform each formula into a rewrite rule. While
the right side of a rule must be either § or 1 in Hsiang’s method, it can be a polynomial less than
the left side in the Grobner-basis method. For instance, the rule made from ¢(z,y) V ~¢(y,z)
is (¢(z,9) A ¢(y,2)) ® a(y,z) — 0 in Hsiang’s method, but is ¢(z,y) A ¢(y,2) — ¢(y,2) in
the Grobner—basis method. The reduction and superposition inference rules are similar to
those in Buchberger’s Grobner-basis algorithm for polynomial ideals over the rationals, and
are discussed in [2]. When the above clauses are input to RRL, after generating 280 critical
pairs (from which 87 rewrite rules are made), the inconsistency 1 = 0 is found (a critical pair
is similar to a resolvent). The whole process takes about 1 minute on a Vax 780 (run in Franz
Lisp). The proof consists of 44 rewrite rules (including the 6 made from the input) and is
included at the end of this note.

The clausal superposition method [5] transforms each clause into a conditional rewrite rule.
For instance, the clause g(z,y) V ~¢(y, ¢) gives the rule ¢(z,y) — 1 if ¢(y,z). Conditional
rewriting is performed by these rules to simplify other clauses and clausal superposition is
performed to generate new clauses. After generating only 73 critical pairs (from which 68
conditional rewrite rules are made), RRL found a proof consisting of 30 rules in half a minute
on Vax 780. We include the proof obtained by this method also at the end of this note.

Both the methods are based on rewriting techniques and employ completion procedure
based approach to automated deduction. They are implemented in RRL and have been suc-
cessfully tried on a number of challenge problems [3,4].

In the proofs below, + stands for @ and ~ stands for —; A is omitted; [3, 4] denotes that
Rule [3] is superposed into Rule [4] to produce another rule.

Proof found by the Grobner—Basis Method

Input [1] q(c, d) ———> 0

Input [2] p(a, b) ==-> 0

Input [3] (p(x, y)q(x, ¥)) —> (1 + p(x, y) + q(x, ¥))

Input [4] (q(x, y)aly, x)) ——> q(y, x)

Input [5] (qlx, ylq(x, z)q(y, 2)) ———> (q(x, y)qly, 2z))

Input [6] (p(x, ylp(x, 2)ply, 2)) -——> (p(x, Yply, 2))

[3, 2] (reduced by [2]) [7] q(a, b) -=-> 1

[6, 2] [8]1 (p(y, b)p(a, y)) -——> 0

[4, 7] (reduced by [7]) [9] q(b, a) ———> 1

[5, 7] (reduced by [7]) [10] (q(a, 2)q(b, z)) -——=> q(b, =z)

[5, 71 (reduced by [71) [11]1 (q(x, a)q(x, b)) ---> q(x, a)

[5, 9] (reduced by [10], [81) [12] q(a, z) --—> q(b, =z)

[5, 9] (reduced by [11], [9]1) [14] q(x, a) -—-> q(x, b)

[3, 14] (reduced by [14]) [18] (p(x, a)qa(x, b)) —> (1 + p(x, a) + q(x, b))
[4, 14] (reduced by [14], [12], [4]) [16] (q(x, B) + q(b, x)) ———> 0

[3, 12] (reduced by [12]) [17]1 (p(a, 2)q(b, z)) —-——> (1 + p(a, z) + q(b, 2))
[3, 1] (reduced by [1]) [18] p(c, d) -—-—> 1

[4, 1] [19] q(d, ¢) —~-> 0

[s, 1] [20] (q(y, d)q(c, ¥)) ——> 0

[3, 19] (reduced by [19]) [21] p(d, ¢) -——> 1

[5, 19] [221 (q(y, c)qld, y)) ———> 0

[6, 21] (reduced by [21]) [23] (p(c, z)p(d, z)) ---> p(c, z)

[6, 211 (reduced by [21]) [24] (p(x, S)plx, 4)) ——> p(x, @)

[6, 18] (reduced by [23], [18]) [25] p(c, z) --=> p(d, =)

[18, 25] [26] p(d, 4) ---> 1

[6, 18] (reduced by [24], [25], [26]) [271 plx, ¢} ——> p(x, d)

[3, 27] (reduced by [27]) [28] (p(x, d)q(x, ¢)) ——> (4 + p(x, d) + q(x, c))
[17, 27] (reduced by [27]) [29] (p(a, d)q(b, ¢)) ——-> (1 + p(a, 4) + q(b, c))
[3, 25] (reduced by [25]) [30] (p(d, z)qlc, 2)) —> (1 + p(d, 2z) + qlc, 2))
[15, 25] (zreduced by [25]) [31] (p(d, a)qle, B)) ——=> (1 + p(d, a) + qlc, b))
[20, 31] (reduced by [20]) [37] (p(d, a)q(b, 4)) ---> q(b, 4d)

[4, 37] (reduced by [15], [4]) [39] p(d, a) ---> 1

[6, 39] (reduced by [39]) [41] (p(x, a)p(x, 4)) ———> p(x, 4)

[3, 41] (reduced by [41], [31) [42] (p(x, a)g(x, d)) ——> (1 + p(x, a) + q(x, 4))
[28, 41] (reduced by [41], [28]) [46] (p(x, a)alx, €)) ——> (1 + p(x, a) + q(x, ¢))
[22, 46] (reduced by [22]) [591 (p(x, a)q(d, x)) ---> q(4, x)

[3, 591 (reduced by [59], [3]1) [60] (p(x, a)p(d, x)) ——> (1 + p(x, a) + p(d, x))
[4, 59] (reduced by [42], [41) [61] p(x, a) =-=> 1 + q(x, 4) + q(d, x)

[60, 61] (reduced by [61], [31) [70] (p(d, x)q(x, d)) -—-> (1 + p(d, x) + q(x, 4))
[8, 701 (reduced by [8], [17]) [79] q(b, d) —-—> 1

[16, 701 (zreduced by [79], [31) [80] q(d, b) --—> 1

[20, 70] (reduced by [301, [20]1) (81} p(4, x) —-—> 1

[8, 81] [83] p(a, d) -—=> 0

[29, 83] (reduced by [83]) [84] q(b, ¢c) ———> 1

[22, 84] (reduced by [80]) 1 ==0

The proof lemgth is 43.

Proof found by the Clausal Superposition Method

Input [1] q(c, &) --->
Input [2] p(a, B) ——>
Input [3] p(x, y) ———>
Input f4] q(x, y) ——>
Input [5] q(x, z) -—=> 1 if { q(x, y), q(y, 2) 2}

Input [6] p(x, z) ———> t if { p(x, y), p(y, 2) %

[1, 41 [7] q(d, ¢) -==> 0

[2, 3] (reduced by [1]) [8] qa, b) -——> 1

[2, 6] [9] pla, y) ——> 0 if { p(y, bB) }

[3, 9] [10] p(y, b) ———> 0 it { ~“q(a, y) }

(3, 101 [12] q(a, y) -=-> 1 if { “q(y, b) }

[6, 101 [13] p(y, y1) ~~=—> 0 if { “q(a, y), pl(yi, B) }
{3, 131 [14] q(y, y1) --—> t if { p(yi, b), ~afa, y) }

if {"q(x, y) ¥
it { qly, x) }

o e OO0

[1, 14] [16] p(d, b) ——> 0 if { "q(a, ¢) }
{7, 141 [17] p(c, B) ——> 0 if { ~q(a, &) }
[6, 171 [18] p(y, B) ———> 0 if { “g(a,), plc, ¥ }
[3, 161 [20] q(a, ¢) ———> 1 if { ~q{d, b) }
[31 19] {26] P(C, y) ——> 0 lf { ’q(as d)) “q(Y; b) }
[3, 26] [28] q(y, b) ==-> 1 if { ~q(a, &), “qlc, y) }
[7, 5] [45] q(y, ¢) -——=> 0 it { q(d, y) }
[4, 45] [46] qc, y) -~=> 0 if { q(d, y) }
[12, 451 [47] q(d4, a) ——-> 0 if { "q(c, b) }
[20, 45] [48] q(d, a) ———> 0 if { ~q(d, b) }

[4, 48] (reduced by [12]) [55]1 q(d, b) ———> 1

[4,47] (reduced by [46], [55], [55]) [56] g(a, d) -———> 0O

[28, 561 {581 q(y, B) ~~-> t if { “qlc, y) 2}

[19, 56] [61]1 p(y, B) ——=> 0 if { plc, y) ?}

[4, 56] (reduced by [61]) [64] q(d, a) --—> 0

[5, 641 (reduced by [3], [56], [21) [e6] q(y, a) ——> 0 if { q(4, y) }
[4, 686] (671 q(a, y) ———> 0 if { q(4, y) }

[8, 67] (reduced by [58], [11) 1 ==

The proof length is 30.

References

[1] Hsiang, J. (1985). Refutational theorem proving using term-rewriting systems. Artificial
Intelligence Journal, 25, 255-300.

[2] Kapur, D., and Narendran, P. (1985). An equational approach to theorem proving in first-
order predicate calculus. Proc. of 9th IJCAI, Los Angeles, Calif., pp. 1146-1153. An ex-
panded version appeared as GE Technical Report 84CRD232.

[3] Kapur, D., and Zhang, H. (1988). RRL: A Rewrite Rule Laboratory. Proc. of Ninth In-
ternational Conference on Automated Deduction (CADE-9), Argonne, Ill., May 1988, pp.
768-769.

[4] Kapur, D., and Zhang, H. (1987). RRL: A Rewrite Rule Laboratory — User’s Manual. June
1987. Revised, May 1989.

[5] Zhang, H., and Kapur, D. (1987). First-order theorem proving using conditional rewriting.
Proc. of Ninth International Conference on Automated Deduction (CADE-9), Argonne, IlL.,
May 1988, pp. 1-20.

Andrews’ Challenge Problem: Clause Conversion and
Solutions

Angshuman Guha and Hantao Zhang (University of Iowa)

In 1979 at the fourth Workshop on Automated Deduction, P. Andrews posed the following
challenge problem:

((32Vyp(e) = p(y)) = ((Fug(u)) = (Vop(v)))) =
((FuVzg(2) = g(w)) = ((Fe1p(21)) = (Vo24(22)))) (1)

It was reported in [1], but we learned it from [6], i.e., no. 34 of Pelletier’s 75 problems for
testing automatic theorem provers. It is said in [6] that “the problem is logically simple,
but its size makes it difficult” because about 1600 clauses will be obtained by converting the
negation of (1) into clausal form. Using our clause conversion program based on the technique
implemented in RRL [3] and that of [5], we were able to obtain a set of as few as only 36 clauses
from the negation of (1). The dramatically lesser number of clauses is promising for use as
input to a resolution—style theorem prover like OTTER [4]. In this note, we describe briefly
our conversion program through this example and also present some experimental results.

Clause Conversion

Traditional methods transform a first-order logic formula into clauses by (i) representing the
formula by only A,V and =-; (ii) removing each outmost quantifier by skolemization; and (iii)
converting the formula into conjunctive normal form. It is obvious that such a transformation
is not good for (1), because too many clauses will be produced.

Our clause—conversion program does not try to remove quantifiers in sequential. Instead,
we replace subformulas of which the outmost symbol is a quantifier by a new predicate, and
then introduce an axiom to make this new predicate equivalent to that subformula. By this
way, the negation of (1) becomes

I((n] = (TL2 = n3)) = (n3 = (’I’L4 = ns))) (2)

m = (3aVyp(z) = p(y)) 3)
ng = (Jug(u)) (4)
n3 = (Youp(v)) (5)
n3 = (JwVzg¢(z) = ¢(w)) (6)
ng = (3z1p(21)) (7
ns = (Vzaq(22)) (8)

Now, each equality is replaced by two implications of which quantifiers are removed by
skolemization (in the actual implementation, these two steps are merged into one). For in-
stance, the equality (3) is replaced by ny — ¢(s) and g(u) — np. After this step, the formulas
become quantifier—free. If we transform these formulas by the traditional method, only 52
clauses will be obtained. We do not know the origin of this technique of removing quantifiers;
we learned it from Deepak Kapur and it was implemented in RRL to support the Grébner-Base
method [2].

The next step of our program consists in replacing complex subformulas by new predicates.
The basic idea was described in [5] and is called “structure-preserving transformation,” but
our implementation is more flexible. Suppose a formula is considered as a tree in the usual
way. Let us define that the depth of a subtree is 0 if it is an atom; otherwise, it is one plus the

5

maximal depth of its sons. In a bottom—up search, our program replaces any subtree of depth
a by a new predicate, where a is a non-negative integer specified by the user. For instance,
suppose the parameter a is 2, then (2) is transformed into

—:(’ng = n7)

Nng = (nl = (n2 = n3))

n7 = (n3 = (ng = ns))
After this step, each formula has a depth of at most o + 1 and is transformed into clauses in
a traditional way (= and = are treated identically).

Using the method described above with the default parameter value of 2, we produced 38
clauses from the negation of (1). With 3 as the parameter value, 36 clauses are produced.
Note that if the parameter « in the structure—preserving transformation is big enough (a > 3
in this example), then no new predicates will be introduced and formulas will be intact in that
step. As we mentioned before, the number of clauses obtained at this case is 52.

Solutions

Many solutions of (1) are already known [1,6,4]. Andrews’ problem presented in [6] (after
fixing a typo) is
((32¥yp(2) = p(y)) = ((Fug(w)) = (Vog(v)))) =
((FwVzq(z) = g(w)) = ((Fz1p(21)) = (Vz2p(22)))) (9)

which is different from (1) in that p(v) was replaced by ¢(v) and ¢(z3) was replaced by p(z2).
This is still a valid theorem because we can derive a contradiction from its negation. The
number of clauses obtained by our program from the negation of (9) is 38 with the default
parameter value of 2, and 36 with a parameter value of 3.

We experimented these two versions of Andrews’s problem in OTTER [4] and RRL (3]

with different formats of the input. The experimental results of the following problems are
summarized in Table 1:

Al: the original formula of the negation of (1);

A36: the 36 clauses obtained by our program (o = 3) from the negation of (1);
A38: the 38 clauses obtained by our program (a = 2) from the negation of (1);
A52: the 52 clauses obtained by our program (e > 3) from the negation of (1);
P1: the original formula of the negation of (9);

P36: the 36 clauses obtained by our program (a = 3) from the negation of (9);
P38: the 38 clauses obtained by our program (o = 2) from the negation of (9);
P52: the 52 clauses obtained by our program (a > 3) from the negation of (9).

In the table, “infer. rule” gives the inference rule used in OTTER: “binary” means binary
resolution and “hyper” means hyperresolution. In each case, factoring is used as an additional
inference rule. “clause gene.” and “crit. pairs” give the number of generated clauses or critical
pairs (similar to resolvents). “clause retain” and “rules gene.” give the number of retained
clauses or rewrite rules made from retained critical pairs. “proof length” gives the number of
clauses or rewrite rules which define a proof. Empty entries in the table correspond to cases
where we were unable to obtain proofs. The timing is taken on a Vax 11/780.

OTTER has a procedure for converting formulas into clauses. The procedure produces only
128 instead of 1600 clauses from the negation of (1) without introducing any new predicates.

OTTER RRL

Prob. || infer. | clause | clause | time | proof || crit. | rules | time | proof
rule gene. | retain | (sec.) | length || pairs | gene. | (sec.) | length

Al binary | 1226 550 | 255.0 163 43 39| 14.2 31
A36 — — — — — 54 841 39.9 59
A38 hyper | 32180 841 | 535.2 148 33 80 | 41.9 59
Ab2 binary | 11316 | 1122 | 194.7 110 24 51| 14.9 35
| P1 binary | 1074 468 | 199.0 155 28 38| 13.3 31
| P36 || hyper | 8087] 247] 80.4 86 22 66 | 25.5 52
|| P38 || hyper | 4129 307 | 46.6 94 23 69 | 25.2 52
{l P52 || binary | 11276 | 1120 | 194.4 109 15 43| 11.6 34

Table 1: Summary of Experimental Results

We learned from Bill McCune that in OTTER, the equality A = B is replaced by AB V AB
instead of (AV B)A(AV B). The former turns out to be much better than the latter when an
equivalence symbol (=) appears under the negation symbol.

The Groébner-basis method of RRL can accept any format of the input. It transforms
formulas into polynomials over a Boolean ring and then transform each formula into a rewrite
rule [2]. The technique discussed in the previous section is used to remove quantifiers before a
formula is transformed into polynomials.

From the experimental results, we may conclude that (i) Andrews’ challenge problem (either
(1) or (9)) is not suitable for a clause-based prover (transforming the input into clauses results
in inefficiency); (ii) the clause transformation techniques described in this note can reduce the
number of clauses and may speed up a resolution—style prover like OTTER, but fewer clauses
do not imply that faster solutions can be found (A36, for example). Finally, we point out that
structurally almost identical formulas like A36 and P36 (see Appendix) can have completely
different degrees of difficulty in theorem proving.

References

[1] Champeaux, D. (1979) “Sub-problem finder and instance checker: Two cooperating pre-
processors for theorem provers,” IJCAI 6, 191-196.

[2] Kapur, D., and Narendran, P. (1985). An equational approach to theorem proving in first-
order predicate calculus. Proc. of 8th IJCAI, Los Angeles, Calif.

[3] Kapur, D., and Zhang, H. (1988). RRL: A Rewrite Rule Laboratory. Proc. of Ninth In-
ternational Conference on Automated Deduction (CADE-9), Argonne, Ill., May 1988, pp.
768-769.

[4] McCune, W., (1988) “Otter 1.0 Users’ Guide,” Argonne National Laboratory, Argonne,
Hl., ANL-88-44. '

[5] Plaisted, D., Greenbaum, S., (1986) “A structure-preserving clause form translation,” J.
of Symbolic Computation, 2, 293-304.

[6] Pelletier, F. J., (1986) “Seventy-five problems for testing automatic theorem provers,” J.
of Automated Reasoning, 2, 191-216.

Appendix

W 0 ~N ;U WN

[
- O

[N i el e
o ~N O kW N

W 0 ~N O O bd W N

.
= O

12.
13.
14.
15.
16.
17.
18.

The 36 Clauses from the Negation of (1)

-n2 | -n% | -n6 | -ni10
-n2 | ~n9 | n6 | ni0 -

.n2 | n8 | -n6 | -n10
.n2 [n9 | n6 | nio

-n2 | n8 | -n6 | n1o0
-n2 | n9 | n6 | -n10

n2 { -n9 | -n6 | ni1o0

n2 | -n9 | né6 | -ni1o0
-q(s8) | n8

. -n8 | q(x10)

. -p(x9) | n7

. -n7 | p(sT)

. -n5(x8) | né

. -n6 | n5(s6)

. =q(s8(w)) | -q(w) | n&(w)
. q(s5(w) | q(w) | nB(w)
. -n5(w) | -q(x7) | q(w)
. -n5(w) | q(x7) | -q(w)

is.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

-p(s4) | n4

-n4 | p(x6)

-q(x5) | n3

-n3 | q(s3)

-ni(x4) | n2

-n2 | ni(s2)

-p(x) | -p(s1(x)) | ni(x)
px) | p(s1(x)) | ni(x)
-n1(x) | -p(x) | p(x3)
-ni(x) | p(x) | -p(x3)
-n3 | “n4 | no

n3 | n4 | no

-n3 | n4 | -n9

n3 | -n4¢ | -n9

-n7 | -n8 | ni0

n7 | n8 | ni0

-n7 | n8 | -ni0

n7 | -n8 | -ni10

The 36 Clauses from the Negation of (9)

-n2 | -n9 | -n6 | -n10
-n2 | -n9% | n6 | nio

.n2 | n8 | -n6 | -n10
.n2 | n9 | n6 | nio
.-n2 | n% | -n6 | ni0
.-n2 | n9 | n6 | -n10
.n2 | -n% | -n6 | nio
.n2)| -n8 | n6 | -nto
. -p(s8) | n8

. -n8 | p(x8)

. =p(x7) | n7

-n7 | p(s7)

-n5(x6) | né

-n6 | n5(s6)

-q(x) | -q(s5(x)) | n5(x)
q(x) 1 q(s5(x)) | nS(x)
-n5(x) | -q(x) | q(x5)
-n5(x) | q(x) | -q(x5)

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

-q(s4) | n4

-n4 | q(x4)

-q(x3) | n3

-n3 | q(s3)

-ni1(x2) | n2

-n2 | ni(s2)

-p(x) | -p(s1(x)) | ni(x)
p(x) | p(si(x)) | ni(x)
-n1(x) | -p(x) | p(x1)
-ni(x) | p(x) | -p(x1)
-n3 | -n4 | n9

n3 | nd | nd

-n3 | né4 | -n9

n3 | -n4 | -n9

-n7 | -n8 | nio

n7 | n8 | nio0

~-n7 | n8 | -ni10

n7 | -n8 | -n10

