ASSOCIATION FOR AUTOMATED REASONING
NEWSLETTER
No. 15 May 1990

From the AAR President, Larry Wos. ..

In this issue of the AAR Newsletter, we discuss a new implementation of a theorem-proving
strategy, present a new result for a familiar challenge problem, announce a new version of
OTTER, and request your assistance in collecting open questions.

Xumin Nie has implemented a positive refinement of model elimination. On numerous
tests on non-Hom problems, including the non-obvious problem that has been the focus of several
articles in earlier AAR newsletters, Nie has obtained good results.

Art Quaife presents a new solution to a challenge problem posed more than a decade ago.
His solution performs more efficiently than other known proofs—but Quaife does offer our
readers the challenge that there is still room for improvement.

Bill McCune has developed a new version of OTTER, and provides details for how to
obtain this powerful theorem prover—iree of charge.

And I have issued a request to AAR members to help compile a set of open questions that
researchers can attack with automated reasoning programs. A sample question and details are
given at the end of the Newsletter.

Conferences

Logic in Computer Science

The fifth annual IEEE Symposium on Logic in Computer Science will take place on June
4-7, 1990, in Philadelphia, Penn. The LICS Symposium aims for a wide coverage of theoretical
and practical issues in computer science relating to logic—including algebraic, categorical, and
topological approaches.

Of particular interest to our AAR members is a special session on automated deduction, on
June 5 from 10:40 to 11:10, chaired by Mark Stickel. Three presentations will be given: Search-
ing for fixed point combinators, by W. McCune, Theorem proving with ordered equations, by N.
Dershowitz, and Automated reasoning in geometry using algebraic methods, by S.-Ch. Chou.

The symposium is sponsored by the IEEE Technical Committee on Mathematical Founda-
tions of Computing in cooperation with the Association for Symbolic Logic and the European
Association of Theoretical Computer Science. For further information contact Prof. A. Meyer,
MIT Lab. for Computer Science, NE43-315, 545 Technology Square, Cambridge, MA 02139,




CADE-10

The 10th International Conference on Automated Deduction will be held in Kaiserslautemn,
West Germany, on July 23-27, 1990. CADE is the major forum at which research on all aspects
of automated deduction can be presented. More than 40 papers will be presented on the following
topics: theorem proving, unification, term rewriting, decision procedures, program verification
and synthesis, deductive databases, logic programming, and inference systems. Invited talks will
be presented by R. Boyer and J Strother Moore (Computational Logic Inc.), Woody Bledsoe
(University of Texas), Wolfgang Bibel (Technische Hochschule Darmstadt), and Alan Bundy
(University of Edinburgh). Inquiries about CADE can be sent to Mark E. Stickel, Al Center, SRI
International, 333 Ravenswood Avenue, Menlo Park, CA 94025 (email stickel@ai.sri.com).

AAAI-90

The American Association for Artificial Intelligence will hold this year’s conference in Bos-
ton, Massachusetts, on July 29-August 3, 1990. Dr. Craig Fields, Director of DARPA, will
present the plenary address, focusing on Al in relation to America’s technological future. The
schedule also includes tutorials on machine leaming, reasoning, expert systems, natural language
processing, and systems. For information or registration, write to AAAI Menlo Park, CA 94025
(phone 415-328-3123).

ICALP 91

The 18th International Colloquium on Automata, Languages, and Programming will be held
on July 8-12, 1991, at the Universidad Complutense, Madrid, Spain. The topics to be covered
include theory of knowledge bases, foundations of logic and functional programming, term
rewriting systems, theory of robotics, and transformation and verification. Authors are invited to
submit papers by November 15, 1990, to Prof. Mario Rodriguez Artalego, Departamento de
Informatica y Automatica, Facultad de Matematicas, Universidad Complutense, Av. Complutense
s/n, 28040 Madrid, Spain.

Model Elimination and Its Positive Refinement

Xumin Nie (SUNY at Albany)

Model Elimination (ME) [1] is a well-known theorem-proving strategy and has been
efficiently implemented [3]. Model elimination is essentially Prolog, with contrapositives of
clauses used when there are non-Hom clauses. In addition, if a subgoal is complementary to one
of its ancestors, the subgoal succeeds. This is commonly called reduction operation. Recently, a
positive refinement of model elimination (MEP) was proposed [2]. The basic idea is to perform
reduction operation only on negative subgoals.

Encouraged by David Plaisted, I modified a Prolog version of PTTP [4], which implements
ME, to implement MEP. I have performed tests on non-Horn problems, mainly from [3]. In com-
parison with ME, MEP performs better (about 20% or more) or equally well on most of the prob-
lems (35 out of 38 problems), in spite of the fact that MEP usually needs to search one or two lev-
els deeper than ME to find the proofs. We show some of the results in the following table
(“‘example’’ is the non-obvious problem that has generated considerable discussion in the AAR
Newsletter). The data were obtained on a Sun 3/60 using the ALS Prolog compiler (Version
0.60) and do not indicate the performance of PTTP in general.



References

-3-

Theorem ME (CPU sec.) MEP (CPU sec.)
chang&lee8 15.10 6.90
example >24 hrs 19088.23
fex4t2 415840 10596.90
fex6tl 58968.62 10577.00
fex6t2 184.40 138.02
hasparts2 278.62 14.18
1s65 42.00 42.00
1s75 19.13 9.30
1s87 279.83 155.68
1s103 8.48 542
15116 37.35 4493
prim 15.10 6.33
qw 10.00 26.00
schubert 2483.08 920.23
wos19 23.72 18.55
wo0s29 22.68 20.70

[1] Loveland, D.W., “‘A Simplified Format for the Model Elimination Theorem-Proving Pro-
cedure,”’ J. ACM, Vol. 16, no. 3, pp. 349-363, July 1969.

[2] Plaisted, D.A, ‘A Sequent Style Model Elimination Strategy and a Positive Refinement,’’
Journal of Automated Reasoning, in press. (Also TR89-014, Department of Computer Science,
University of North Carolina, Chapel Hill, 1989.)

[3] Stickel, M.E., ‘A PROLOG Technology Theorem Prover,”” Journal of Automated Reason-
ing, Vol. 4, no. 4, pp. 353-380, 1988.

[4] Stickel, M.E., ‘‘A Prolog Technology Theorem Prover: A New Exposition and Implementa-
tion in Prolog,”” Technical Note 464, SRI International, 1989.

Andrews’ Challenge Problem Revisited

Art Quaife (quaife@garnet.berkeley.edu)

Peter Andrews posed the following challenge problem at the Fourth Workshop on
Automated Deduction in 1979:

Theorem A

((F2Vy(p(z) = ply)) = (Qug(w) = Yuug(uw))) =
(FuwVz(g(w) = ¢(2)) = (Fvp(v) = Youp(vv)))).




4-

Andrews reportedly stated that he would supply the first 500 clauses for free. Each equivalence
sign that is eliminated produces a doubling of the subformulas that it governs.

Guha and Zhang addressed this challenge problem in [2]. They compared solutions
obtained with their program RRL to solutions obtained by the resolution theorem prover OTTER.
The clausal conversion routines contained in OTTER produce 128 clauses for this problem. By
introducing new predicates as abbreviations for subformulas, Guha and Zhang obtained several
conversions with fewer clauses. Their best conversion contains only 36 clauses.

My clausal conversion program handles this problem even more efficiently without intro-
ducing any abbreviations, producing only 32 clauses in the conversion. This conversion is shown
in the Appendix. My program performs more efficiently than the OTTER conversion routine, in
that it (1) pulls out and unites existential quantifiers, replacing (x A(x) vdy B(y) v C) by dx
(A(x) v B(x) v C); (2) checks whether any clause is subsumed by a simpler factor; and (3) elim-
inates any clause that is subsumed by another clause. There is stiil room for improvement in my
conversion, since only 16 of the 32 clauses are actually used in the subsequent proof.

For the same reason one can see that Guha and Zhang’s 36-clause conversion is not optimal.
By introducing defined abbreviations, I have obtained a conversion that produces only 24 clauses.
Every clause is used in the subsequent proof.

In the conversion to clausal form, I eliminate equivalence signs by using one of the two for-
mulas

A X=NifF (XvD&(-XVvY),
=D iff (=XvDH&( Xv =Y)).
When such a doubling of the subformulas is about to occur, my conversion program makes esti-
mates of the number of literals in the conjunctive normal form that will result, with and without

introducing an abbreviation for a subformula. It introduces an abbreviation if the estimated
number of literals will be reduced thereby.

Consider a subformula of the form
C=D,
where C and D are both complex sentences. Guha and Zhang’s procedure abbreviates this as
ni=n2,
and introduce new axioms
ni=C, n2=D,

where n1 and n2 are new propositional constants. But clearly, one more new constant has been
introduced here than is needed. My program abbreviates this as

ml=C,
with one new axiom

mi=D.

i,

e



5.

For this reason, and because my program only introduces an abbreviation when an estimate sug-
gests that it will be helpful, my program introduces only 3 new constants in the conversion of
Theorem A. By comparison the Guha and Zhang procedure introduces 10 new constants in their
best conversion. :

Two other solutions to Andrews’ problem have been reported that I know of. Henschen [3]
reported solving the problem with a conversion program that produced 86 clauses, followed by a
resolution proof that terminated at line 1024. De Champeaux [1] reported solving the problem by
reducing the negated theorem to FALSE with his INSURER/INSTANCE conversion routines that
have more quantifier logic built into them.

Guha and Zhang also present the following variant of Andrews’ challenge:

Theorem P

(F2Vy(p(z) = p(y)) = Bug(u) = Yuu — p(uu))) =
(BwVz(q(w) = ¢(2)) = (Bup(v) = Yvvg(vv)))).

Here again their best conversion produced 36 clauses, with 10 new constants.

If I set my conversion program not to introduce abbreviations, it also produces 36 clauses
on this problem. But when I let it introduce abbreviations, it does even better on this problem
than the last, producing only 22 clauses with 3 new constants. Again, every clause is used in the
subsequent proof. I show this conversion in the Appendix.

The constants my program introduces are obtained from Guha and Zhang’s constants as fol-
lows:

ml=n9, m2=n10, m3= (n6=n10).

My conversion program is written in Arity Prolog and uses many routines provided by William
McCune. The two conversions that introduce definitions each take about 2 seconds on my desk-
top Everex 386/25. The two conversions that do not introduce definitions take about 15 seconds
each.

The following are the statistics for the subsequent OTTER version 2.0 proofs, run on a
VAX 8800. The clauses retained and proof lengths include counting the axioms. All proofs were
obtained using hyperresolution and factoring as the inference rules. For the proofs of A-24 and
P-22 (using abbreviations), I put only the last clause in the set of support. For the proofs of A-32
and P-36 (no abbreviations), I put all clauses in the set of support, and also set the OTTER flag
“‘process_input”’ to first factor all the input clauses.

Clauses Proof Time

Theorem retained length  (sec.)
A-24 clauses 194 81 6.74
A-32 clauses 97 53 2.71
P-22 clauses 89 49 142

P-36 clauses 107 53 3.03




-6-

For comparison, the proof times required by Guha and Zhang on their best 36-clause conversions
were 39.9 and 25.5 seconds, respectively, using RRL on a VAX 11/780.

My estimating formulas are not sufficiently sophisticated to be worth reproducing. There is
a problem with relying on an estimate of the number of clauses that will be produced. Consider a
formula of propositional logic of the form P = Q. If this formula is a theorem, then any proposi-
tional constant within P that can influence P’s value must also appear in @, and vice versa. This
means that when we multiply the negation of this formula out, many simplifications should be
possible, such as elimination of tautologous clauses and subsumption of other clauses. As a
result, an g priori estimate of number of resulting clauses based on a symbol count may turn out
erroneously high. Of course, rather than relying on an estimate, one could carry out the full
conversions both with and without the definition, and use the better one.

It is worth commenting on an anomaly in OTTER. A natural way to order clauses is to
place simplest ones first, and most complicated ones last. For example if one is developing a
theory, one will normally first have a list of axioms, followed by a list of previously proven
theorems which are usually more complicated. However, in applying an inference rule, OTTER
searches the axiom list from bottom to top. If the clauses are naturally ordered, this means that
OTTER tries to make more complicated inferences before it tries simple inferences, and it often
happens that OTTER will find a complicated proof when a simpler one was at hand. For this rea-
son, in the clause list for Theorem P in the Appendix, I have put the shortest clauses at the bottom
of my axiom list.

References

[1] De Champeaux, D., ‘‘Subproblem Finder and Instance Checker,”’ J. ACM, Vol. 33, no. 4, pp.
633-657, 1986.

[2] Guha, A., and Zhang, H. ‘‘Andrews’ Challenge Problem: Clause Conversion and Solu-
tions,”” AAR Newsletter No. 14, pp. 5-8, December 1989.

[3] Henschen, L., et al. ‘‘Challenge Problem 1,”’ SIGART Newsletter, 72, pp. 30-31, July 1980.

Appendix

The following is the list of clauses I obtained for the two problems. Symbols beginning
with ““f»* or “‘c’’ are Skolem functors or individual constants, respectively. I use sequent nota-
tion, in which commas before the conditional sign stand for &, while those that follow the impli-
cation sign stand for v.

Clauses for negation of Theorem A, not using abbreviations:

L. p(cx),q(cw) = p(¥3),q(z3).
2.p(cx),q(z4) > p(y3).q (cw).
3.p(y4).q(cw) = p(cx),q(z3).
4.p(y4),q(z4) - p(cx),q(cw).
5. p(ex).pxT).p (fy 5(x7)),q (cw) — q(z3).
6.p(cx),p(xT).p (fy 5(x7)),q(24) — q (cw).
7.p(cx),q(cw),qwD.q (fz5w ) - p 3).
8.p(cx),qw2) - p(O1),q(w4),q(fz(w4)).
9.p(cx),q(w3),q(fz(w3)) > p(y 1),g(w4).
10. p(cx) = pO1),q(cw),q (w3),q(fz(w3)).

S5

i
&



11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

p(x5),p(fy(x5)),q(cw) = p(x2),q(z1).
p(x5),q(cw) = p(x2).p(fy (x2)),q (z 1).

P (x9),p(fy5(x9)),q(z4) = p(x8),q (cw).

P (x9),q(z4) > p(x8).p (fy 5(x8)),q (cw).
p(2) = p(cx),q(ew).g(w3),q (fz (w 3)).

P (4,9 (cw),g(w9),q(fz5(w9)) — p(cx).
p4,qw6) — p(cx),g(w9),q (fz5(w9)).
P 4).qw9).q (fz5(w9) — p(cx),q(w 10).
g(ew) = pex).p(x 1).p (fy (x1)).q(z 1).
q(z2) - p(cx).p xD.p(fy(x1)),q (cw).
p(cx),p (x1),p(fy (x1)).g(w 3),q (2 (W 3)) — q(cw).

Clauses for negation of Theorem P, using abbreviations:

e A T al ol

P ot e
=

3L
32.

. pcx),p (x1),p (fy (x 1))—>q (cw),q (W 3),q (fz (w3)).

. pex).p xD.p(fy5(x7)).q(cw).g w9),q (f25(w9)) — .
. pGDp(fy(x1)),q(cw).g w3),q(fz(w3)) = p(cx).

. p(x4),p(fy (x4)),qgw 1) > p(x2),q W4),q (fz (w4)).

. px4).p(fy (x4)).q(w3),q (fz(w3)) - p(x2),qg(w4).

. px4),qgw1l) > px2),p(fy(x2),g(wa).q(fz(w4)).

. p(x4),q(w3),q(fz(w3)) > p(x2).p(fy (x2)).q (W4).

. pGT.p(yS5(xT) = plcx),q(cw),g(w9),q(fz5(w9)). -
. q(cw),q(w3),q(fz(w3)) = p(cx),p(x D,p (fy (x 1)).
qw9),q(fz5w9) — p(cx).p x 1.p (fy 5(x7)),q (cw).
= px),pxT).p(fy5(xT)).q(cw),g(w9),q(fz5w9)).

mlm3,pEl),p(HExl)—>. 13. p2),p(H3(x2)) > ml,m3.
mlm3 - px,p(fHEL). 14. g(ew) >m2,m3,9(z4).
ml,p(cx) »>m3,p(y4). 15. q(z3) > m2,m3,q(cw).
ml,p(y5)— m3,p(cx). 16. - mlm3,p(x2),p(fy3(x2)).
m2,m3,q(cw) —> q(z1). 17. ml,qg(ul) > q(uul).
m2,m3,q(z) = q(cw). 8. m2pvl)y—>pwl).
m2,qw2),q(fz5w2)) > m3. 19. p(cw) 5> m2.
m2—->m3,qw2),9(fz5w2)). 20. g(cuu) »>ml.
m3,p(cx) >mlp(yl). 21. > m2,p(cv).
m3,p(y2) »>ml,plcx).

. m3,qwl)qg(fz2(wl)) > m2. 22. —->ml,q{cu).
m3—-m2,qwl),q(fz2(w1)).

OTTER 2.0 Now Available

Bill McCune (mccune@mcs.anl.gov)

The theorem prover OTTER 2.0 has been released. Improvements over earlier versions
include a termination ordering for demodulation, the option of using Prolog-style (upper case)
variables, rewriting of atoms as well as terms, and new options for controlling paramodulation
and for choosing the given clause.

To get a copy by FTP, connect to hermes.mcs.anl.gov, username anonymous; any password
will do. Go to pub/Otter, and follow the directions in README.FTP. (In case you need the net
address of hermes.mcs.anl.gov, it is 192.5.200.25.)

If you are not able to use FTP or if you want just the PC or the Macintosh version, let me
know—I will send information. (If you can FTP and then get the files to your PC or your Macin-
tosh, that is fine, because the UNIX version contains the PC and the Macintosh executable files.)

Bill McCune

MCS-221

Argonne National Laboratory
Argonne, IL. 60439-4844
mccune@mcs.anl.gov




-8-

Searching for Open Questions

Larry Wos (wos@mcs.anl.gov)

I am enlisting your assistance in accruing a set of open questions to attack with an
automated reasoning program. The attempt to answer various open questions has clearly resulted
in significant advances for the fields of automated theorem proving and automated reasoning.
‘When success is obtained, the appreciation for the potential value of our field increases markedly.

At Argonne National Laboratory, we have begun organizing a set of open questions.
Currently, we have questions focusing on Robbins algebra, nonassociative rings, Tarskian
geometry, and formulas from equivalential calculus. As an example, consider the following:

Question: Is every Robbins algebra Boolean?
The following 3 axioms define a Robbins algebra:

X+y = y+x
X+y)+z =x+(y+2)
(x+y)+-x+-y) = x

A Robbins algebra is Boolean if Huntington’s axiom
(-Xx+y)+-(x+-y)=x

can be derived.

Similar questions would be of interest, but we also welcome questions totally unlike any
previously attacked. Questions need not be taken from mathematics and logic; physics, circuit
design, or the area of puzzles offers challenging questions to attempt to answer with an automated
reasoning program. Ideally, each question should be accompanied by one or more appropriate
references, the needed definitions, and some comments about its importance.

I volunteer to maintain at Argonne National Laboratory a file of such questions, available by
electronic mail through FTP and other means, and also available by request in the form of surface
mail. Questions can be mailed to L. Wos electronically (wos@mcs.anl.gov) or by surface mail
(L. Wos, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439-4844).

Perhaps you can interest other mathematicians, logicians, physicists, and other scientists in
contributing to this set of open questions. Let us set a goal of having 50 well-defined open ques-
tions in hand by the end of 1991. My thanks to each and all of you for the effort that will be
required.



