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From the AAR Presideﬁt, Larry Wos . . .

Our second newsletter for 1991 features two contributions from our readers. One is a “schol-
arly footnote” to an article that appeared in our last issue. The other is an article by Maria Paola
Bonacina on Lukasiewicz logic. While this article is significantly longer than the usual contribu-
tions, we believe our readers will be interested in the problems she presents and will enjoy her
challenge to seek other proofs and to answer open questions.

Conferences

TACS’91

The International Conference on THEORETICAL ASPECTS OF COMPUTER SOFTWARE
(TACS’91) will take place on September 24-27, 1991, at Tohoku University, Sendai, Japan. The
conference is sponsored by Tohoku University, Sendai, in cooperation with the Information Pro-
cessing Society of Japan, the Japan Society for Software Science and Technology, the Association
for Symbolic Logic, and ACM SIGACT; the cooperation of the IEEETC on Mathematical Foun-
dations of Computing and ACM SIGPLAN is pending,.

Presentations will include invited talks by Gordon D. Plotkin (Edinburgh University) on the
completeness of type-checking, by Masahiko Sato (Tohoku University) on adding proof objects
and inductive definition mechanisms to Frege structures, Albert R. Meyer (MIT Laboratory for
Computer Science) on full abstraction and the context lemma, Robert L. Constable (Cornell Uni-
versity) on constructive aspects of classical logics, Amir Pnueli (Weizmann Institute of Science)
on applying formal methods to software development-partially, Kazuhiro Fuchi (ICOT, Tokyo) on
the role of logic programming in the Fifth Generation Computing project, Masami Hagiya (Kyoto
University) on programming-by-example and proving-by-example, Jean-Louis Lassez (IBM Wat-
son) on programming with constraints, Susumu Hayashi (Ryukoku University) on singleton union
and intersection types in program extraction, and Dana S. Scott (Carnegie Mellon University) on
replacing logicians by machines.

A proceedings, published as a volume in Springer-Verlag’s Lecture Notes in Computer Science,
will be given to registrants on arrival.




For further information, contact

Prof. Takayasu Ito Prof. Albert R. Meyer

Department of Information Engineering MIT Laboratory for Computer Science
Tohoku University 545 Technology Square, NE43-315
Sendai, Japan 980 Cambridge, MA 02139, USA
tacs91@ito.ecei.tohoku.ac.jp tacs-request@theory.lcs.mit.edu

FAX: 81 22 267 4404 FAX: (617) 253 3480

2nd International Symposium on AI and Math

The Second International Symposium on Artificial Intelligence and Mathematics will be held
at Fort Lauderdale, Florida, on January 5-8, 1992.

The symposium is the second of a biennial series featuring applications of mathematics in
artificial intelligence, as well as artificial intelligence techniques and results in mathematics. There
has always been a strong relationship between the two disciplines; however, the contact between
practitioners of each has been limited, partly by the lack of a forum in which the relationship could
grow and flourish. This symposium represents a step towards improving contacts and promoting
cross-fertilization between the two areas.

Authors are invited to submit 5 copies of extended abstracts (up to 10 double-spaced pages)
by July 31, 1991, to J.-L. Lassez, IBM T. J. Watson Research Center, H1-A12, P.0O. Box 704,
Yorktown Heights, NY 10598. Authors will be notified of acceptance on Sept. 10. Authors will
be invited to submit within one month after the symposium a final full-length version of their
paper, to be considered for inclusion in a refereed volume of the series Annals of Mathematics
and Artificial Intelligence, J. C. Blatzer Scientific Publishing Co.

The symposium is sponsored by Florida Atlantic University and IJCAI Partial travel subsidies
may be available to young researchers.

International Conference on Fifth Generation Computer Systems 1992

The Fifth Generation Computer Systems (FGCS) project was started in 1982 to make a rev-
olutionary new type of computer oriented to knowledge information processing in the 1990s The
project is now in the final three-year stage of its ten-year duration. The purpose of the Internation
Conference on Fifth Generation Computer Systems 1992 is to present the final results of the FGCS
project, as well as to promote the exchange of new ideas in the fields of knowledge information
processing, logic programming, and parallel processing. The conference will take place June 1-5,
1992, in Tokyo. The first two days will be devoted to the presentation of results of the FGCS
project, as well as to invited lectures by leading researchers. The remaining three days will be de-
voted to technical sessions for invited and contributed papers and panel discussions. Throughout,
a number of demonstrations will be given using the parallel inference machine prototype system
now being completed.

Authors are invited to submit papers to Professor Hozumi Tanaka, FGCS’92 Program Chair-
person, ICOT, Mita Kokusai Bldg. 21F, 4-28 Mita 1-chome, Minato-ku, Tokyo 108, Japan. The




papers are restricted to 16 pages (1-1/2 spaced or 12/18), including figures and a 150-200 word
abstract. The papers must be received by October 1, 1991; they must be written (and presented)
in English.

Program areas include Foundations (e.g., automated reasoning; knowledge representation;
theoretical foundations of logic programming and databases; and concurrent, distributed, and
parallel computation); Architectures (e.g., parallel implementation techniques, performance mod-
eling, and inference machines); Software (e.g., logic programming, deductive databases, reasoning
about programs, and programming environments); and Applications and Social Impacts (e.g.,
robotics, knowledge-base systems, natural language, and database applications).

CADE-11

The 11th Conference on Automated Deduction (CADE) will be held at Saratoga Springs, New
York, on June 15-18, 1992. It will be hosted by the State University of New York at Albany.

CADE is the major research forum covering all aspects of automated deduction. Original
papers in automated deduction (for nonclassical as well as classical logics) are invited; specific
topics of interest include (but are not limited to) the following:

Applications Induction Program Synthesis
Commonsense Reasoning  Inference Systems Rewrite Rules

Deductive Databases Logic Programming  Theorem Proving

Decision Procedures Program Verification Unification Theory

Original research papers, descriptions of working reasoning systems, and problem sets that
provide innovative, challenging tests for automated reasoning systems, are solicited. Research
papers should not exceed 7,000 words (15 proceedings pages, 5.5 by 8 inches, 11-point type, will
be allotted). System descriptions and problem sets should be limited to 5 proceedings pages.

Authors should send 6 copies of their submission to the Program Chair Deepak Kapur (ka-
pur@cs.albany.edu) at the Conference address. The title page of the submission should include
author’s name, address, phone number, and e-mail address. Papers must be unpublished and not
submitted for publication elsewhere. Submissions that are late or too long or that require major
revision will not be considered. ’

Submission deadline: Nov. 8, 1991
Notification of acceptance: Feb. 1, 1992
Camera-ready copy due: March 16, 1992

Further information about the conference may be obtained from the Local Arrangements Chair
Neil V. Murray (nvm@cs.albany.edu) at the Conference address.

Conference Address: CADE-11
Institute for Programming and Logics
Department of Computer Science LIG7TA
University at Albany - SUNY
Albany, NY 12222




The program committee is as follows:

Peter Andrews Larry Henschen William McCune
Wolfgang Bibel Deepak Kapur Grigori Mints

W. W. Bledsoe Claude Kirchner David Musser

Robert S. Boyer  Kurt Konolige Hans-Juergen Ohlbach
Alan Bundy Jean-Louis Lassez David Plaisted
Edmund Clarke Vladimir Lifschitz Joerg Siekmann
Robert Constable Donald Loveland  John Slaney

Ryuzo Hasegawa  Ewing Lusk Mark Stickel

The Halting Problem: A Scholarly Footnote
Leslie Burkholder, CDEC, Carnegie Mellon University
(burkholder@andrew.cmu.edu)

Massimo Bruschi’s recent article providing a mechanical proof of the unsolvability of the
halting problem [2] allows me to correct a scholarly error and point to a relevant citation. The
error concerns where the hand-produced proof of the result appeared. It was not in the SIGCSE
Bulletin but in [3]. The relevant citation is to [1]. There, Woody Bledsoe and Richard Hodges give
the formalization of the halting problem from [4] as an example of how complicated a problem
for automated deduction might get.
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Problems in Lukasiewicz Logic
Maria Paola Bonacina
(bonacina@sbcs.sunysb.edu)

In the November 1990 issue of the AAR Newsletter [15], Larry Wos described a problem in
Lukasiewicz logic as a challenge problem for theorem provers. This note is intended to provide
additional information to anyone interested in attacking the problem with an automated prover.
We present three problems in Lukasiewicz logic and the results obtained so far in proving them
automatically.

Lukasiewicz logic is many-valued propositional logic, that is, logic with n truth values. This
is actually a family of logics Ly, La, ..., Ln,..., Ly,, where L, n > 1, is propositional logic with
n truth values. Ly, has infinitely many truth values. A logic L,, n > 1, is the set of all sentences
satisfied by the structure L, =< A4,, g, f > with domain

An={El0<k<n—1}
and two functions
g: A, — Ap,g(z)=1-2z and
fiAn X Ap — Ay, f(z,y) = min(l -z + y,1),

where —, + and min are subtraction, addition and minimum on the rational numbers. The
domain A, is the set of truth values of the logic. The function g gives the complement of its
argument with respect to 1, while f(z,y) adds the complement of z to y, truncating it to 1 if
it exceeds 1. Lj is the classical two-valued propositional logic, with domain A, = {0,1}, g(z)
is negation and f(z,y) is implication. The functions g(z) and f(z,y) are a form of generalized
negation and generalized implication, respectively, that specialize to the classical connectives only
if n = 2. As n increases, the domain A,, grows, whereas the set L,, of true sentences becomes
smaller and smaller. At the limit, the logic Ly, has the interval [0, 1] of rational numbers as its
set of truth values.

Lukasiewicz conjectured that the following axioms, together with modus ponens, are an ax-
iomatization for Ly,:

Lp=>(g=0p

N

=g (g=2r)=(p=>1)

w

A= =>9=({(¢g=p) =>p)

4. (not(p) = not(q)) = (¢ = p)

ot

(=29 =@=p)=>(@=0>p

where not and = are interpreted as ¢ and f in the model Ly,. These axioms and the original
description of many-valued logic can be found in [14]. A more recent treatment is in [11]. The
conjecture that the above axioms with modus ponens are an axiomatization of Ly, has been
proved first by Wajsberg, then independently by Rose and Rosser in [13] and by Chang in [4].




First Problem: Dependency of the Fifth Axiom (original presentation)

The first challenge problem is to derive the fifth axiom in the above list from the
other four. This result has been proved independently by Meredith [9] and Chang [5]. It has
been called, somewhat imprecisely, “Fifth Lukasiewicz Conjecture” in [1] and thus in [15]; we shall
rather call it “Dependency of the Fifth Axiom.” To our knowledge, no automated proof of this
problem in this formulation has been obtained so far. Extensive experimentation with OTTER
[8] has been and is currently being conducted at the Argonne National Laboratory.

Second Problem: Dependency of the Fifth Axiom (equational presentation)

Lukasiewicz logic is related to several families of algebra: the MV-algebras, introduced by
Chang in [4] to prove Lukasiewicz’s conjecture about the axiomatization of Ly,; the AFC*-
algebras (approximately finite dimensional C*-algebras), with applications in quantum mechanics
[10] and the Wajsberg algebras [6, 12]. The problem of proving the dependency of the fifth
axiom can be reformulated as an equational problem in Wajsberg algebras. The following set of
equations, which we call W, is the axiomatization of Wajsberg algebras [6]:

1. true=s>z==2
2. (z=2>y)=2>((y= 2) = (2= 2)) == true
3. ey =>y==@y=>z)=>2
4. (not(x) = not(y)) = (y = ©) == true
Axioms 2, 3, and 4 correspond to axioms 2, 3, and 4 in the original presentation of Ly, by
Lukasiewicz. The fifth axiom
((p=9)=(¢=p) = (¢= p) == true
can be written more conveniently as
(z=2y)V(y=>z)==true
by introducing the connective V defined as
tVy==(z=>y)=>y.
Thus the problem is to derive (z = y)V (y = z) == true from W. The operation z V y is

interpreted as maxz(z,y): if we replace = by its interpretation, we get

. . min(l—-1+y,1)=yify>z
1- 1- 1 1) =
min(l -min(l -z +y,1)+y,1) {min(l—‘—1+x—y+y,1)=wifz‘2y
i.e. maz(z,y). A dual operator A can be defined as
z Ay == not(not(z) V not(y))

and its interpretation is 1 — maz(1l — z,1 — y)), that is, min(z,y). The connectives V and A are
not the only operators that can be defined starting from = and not. Another way to introduce
a connective for disjunction is

z ory==not(z)=>y



with a dual operator and defined by
z and y == not(not(z) or not(y)).

By replacing = by its interpretation min(1l — z + y,1), we can see that or is interpreted as
min(l—(1—=z)+y,1) = min(z + y, 1); that is, it is the rational sum of z and y truncated to 1 if
it exceeds 1. Interestingly,  and y gives the difference between z + y and min(z + y, 1), that is,
the information lost by using the truncated sum: the interpretation of z and y is 1 — (min(1 —
z+1-y,1)). Imin(z+y,1) =2+ y, then min(l-z+1-y,1)=1and z and y = 0. If
min(z + y,1) = 1,i.e. 4+ y = 1+ a for some a, then min(l-z+1—-y,1)=1—-2+1-y
andzaendy=1-1+z—-1+y=2+y~1=a. The two pairs V and A and or and and are
two different pairs of connectives. Only if the domain of interpretation is {0, 1} (i.e., the logic is
two-valued), V collapses onto or and A collapses onto and.

The theorem (z = y) V (y = z) == true is interpreted as maz(min(l -z +y,1), min(l —y+
z,1)) == 1, that is intuitively true, since the left hand side evaluates to maz(1 —z + y,1) = 1 if
z2>yand tomaz(l—y+z,1)=1ify > z.

The First Automated Proof of the Dependency of the Fifth Axiom (equational pre-
sentation)

The first automated proof of the dependency of the fifth axiom in Wajsberg algebras appeared
in [1]. The proof has been obtained by using the theorem prover SBR3. SBR3 is based on the AC-
Unfailing Knuth-Bendix completion procedure [7, 3] with several significant enhancements that
are described in part in [1, 2]. In completion-based theorem proving, the principle of completion
is applied not to generate a canonical system, but to prove refutationally a specific given theorem.

The proof in [1] also uses the knowledge that the following lemmas are true in any Wajsberg
algebra [6]:

1.z = 2 == true

2. iffz=>y==y=>z==truethenz ==y

3. z = true == true

4. z = (y = ) == true

5. ife = y==y = 2 == true then z = 2 == true
6. (z=y)=> ((2=>2)=> (2= y)) == true
Tas(y=)==y> (2= 2)

8. z = false == z = not(true) == not(z)

9. not(not(z)) ==z

10. not(z) = not(y) ==y => =




We list them here as additional, simpler problems for experimenting in Wajsberg algebras with
an equational prover. All of them except lemma 7 have been derived by SBR3 from W in a few
seconds !. Lemma 7 is treated below. The proof of the dependency of the fifth axiom in [1] is
done incrementally through five executions:

1. Prove lemma 9 not(not(z)) == z from W.

During the proof the lemmas 1, 3, 4 and 8 are also generated automatically. The running
time is 58 secs.

2. Prove lemma 10 not(z) = not(y) == y = z with W and lemmas 1, 3 and 9 as input. The
running time is 11 secs. '

3. Introduce the operator and defined implicitly by
(z and y) = 2 == (z = (y = 2))

and prove that and is commutative from W and lemmas 1, 3, 4, 8, 9 and 10. Lemma 7
z = (y= z) ==y = (z = z) is an immediate consequence. The running time is 17 secs.

4. Introduce the operator or defined as = or y == not(z) = y, and prove that it is asso-
ciative and commutative from W and lemmas 7, 9 and 10. This proof is very easy and
can be done quickly also by hand. As a side-effect it produces the equation: z and y =
not(not(z) or not(y)), that defines and in terms of or and shows that and is also AC. Note
that lemma 9 implies that z or y == not(z) = y is equivalent to ¢ = y == not(z) or y
and thus allows us to express implication in terms of or.

5. Prove (z = y) V (¥ = z) == true from W, lemmas 1, 3, 9, z = y == not(z) or y, where
or is AC, and z Vy == (2 = y) = y. The running time is 22 minutes and 30 secs.

This proof shows just one successful approach to the problem. Other proofs may be sought. In
particular, there remains open the problem of finding a proof without resorting to the auxiliary
operators or and and, that is, working only with the basic operators = and not.

Another Approach to an Automated Proof of the Dependency of the Fifth Axiom
(equational presentation)

The dependency of the fifth axiom in Wajsberg algebras has been proved by SBR3 in less
than 1 minute, by using a different axiomatization of Wajsberg algebras, that we shall call W'.
The basic connectives in W' are and and ezclusive or, that we denote by @. The axiomatization
W’ has been generated and proved equivalent to W by SBR3 [2]. This experimentation has been
conducted by Siva Anantharaman. We assume to have already performed all the steps of the
previous proof but the last one: namely, we have lemmas 9, 10, 7, and the AC operators and and
or, and we can express => in terms of or. Then, we define

g xy ==z and y == not(not(z) or not(y)) and

L All running times are for a Sun 3/260 and refer to the very first run of this proof in fall 1989. The current
version of SBR3 is much more efficient.



z @y == (z and not(y)) or (not(z) and y).

If we add to W these two definitions, plus z = y == not(z) or y and the knowledge that and
and or are AC, we can prove by SBR3 all the theorems in the following set W'

1. not(z)==2&1

2. 2860 ==2
3.2z ==

4. z2x1l==2

5. z2x0==0

6. (1®z)*xz ==

T.z6(ldy)==(zd)dy
8. (1dz)*xy)d)*xy==((10y)*2)D1)*z

where * is AC, while @ is commutative only. Furthermore, the prover generates the definition of
or in terms of @:

zory=16((1@2)*(1@y)).
Inversely, if we start with W’ as axiomatization and we add the definition:
(e=y) =18+ (1Y),

we obtain by SBR3 all the equations of W as theorems. This proves that the sets W and W' are
equivalent axiomatizations. The axiomatization W’ is partly resemblant of the system of axioms
for the Boolean ring given by J. Hsiang. However, there are substantial differences, as W' is
an axiomatization for many-valued logic, whereas the axioms for the Boolean ring apply to the
Boolean case (i.e., two-valued logic). The product * is not idempotent. This can be easily checked

by recalling that  is just an alias for and and thus is interpreted as 1 —min(l—z +1—y,1): for
instancefor = 0.3, z+*z=0and forz = 0.7,z vz =0.4"!

The most important property that is missing is distributivity:
(z and y) or z == (z or z) and (y or z) and
(z or y) and z == (z and 2) or (y and 2)

do not hold, as can be easily seen by assigning for instance 0.05 to z, 0.2 to y and 0.9 to z.
Similarly, distributivity does not hold if or is replaced by @. Also, @ is only commutative in W/,
whereas it is AC in the Boolean case. The above assignment to z, y and 2 is also a counterexample
for associativity of @. The absence of these properties is clearly related: if distributivity were
true, associativity of @ would follow and many-valued logic would collapse on two-valued logic.




The Lattice Structure of Wajsberg Algebras

A simple, manual proof of the dependency of the fifth axiom in Wajsberg algebras is sketched
in [6]. We describe here this approach, as it may provide hints for other automated proofs. Also,
the proof uses a second bunch of lemmas that may be used for further experiments. The proof is
based on regarding Wajsberg algebras as lattices. The relation defined by

z < yifand only if z = y == true

is a partial order: lemmas 1, 2 and 5 establish reflexivity, antisymmetry and transitivity of this
relation. If we interpret as usual ¢ = y as min(1—z +y, 1) and true as 1 on the rational interval
[0,1], we see that this order is just the standard ordering on the rational numbers. Indeed, the
connectives V and A, that are interpreted as maz and min on the rational numbers, are the
supremum and infimum with respect to this order. The following theorems are given in [6] and
proved by using the properties of lattices:

l.ife<ythenz=>2>y==z
2.ifz<ythenz=>z<2z=3y
J.z<y=>zifandonlyify<z =z
4. not(z V y) == not(z) A not(y)

5. not(z A y) == not(z) V not(y)

6. (eVy)=>z==(2=>2)A(y=2)
T.z=>(yA2)==(z=>y)A(z = 2)
8. (z=>y)V(y= z)==true
9.z=>(yVa)==(c=>y)V(z=2)
10. (zAy)=>z==(z=2>2)V(y=2)
1. (zAy)Vz==(zV2)A(yV2)

12. (zAy)=>z==(z=>y)=>(z=>2)

Theorem 8 is the dependency of the fifth axiom and theorem 11 is distributivity, that hold between
V and A whereas it does not for or and and. Assuming to have proved the theorems preceding
it in the above list, the dependency of the fifth axiom can be proved as follows: by instantiating
first z to ¥ and then z to z in theorem 6, we obtain respectively

z=>y==(zVy)=>y and y=>z==(zVy) =>z.
Then we have

(z=y)=>@W=z)==((Vy)=>y) =>(=Vy =>r=)
by using the two above equations,

(zVy)=19y)= ((zVy) = z) == (not(y) = not(z V y)) = (not(z) = not(z V y))
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by lemma 10,

(not(y) = not(z V y)) = (not(z) = not(z V y)) == not(z) = ((not(y) = not(z V y)) =
not(z V y))

by lemma 7,
not(z) = ((not(y) = not(z V y)) = not(z V y)) == not(z) = (not(y) vV not(z V y))
by the definition of v,
not(z) = (not(y) V not(z V y)) == not(not(y) vV not(z V y)) =
by lemma 10,
not(not(y) Vnot(z Vy)) =z == (yA(zVy))=>2
by theorem 4 in the above list and lemma, 9,
(yA(zVy)z>ez==y=>=z
by the absorption law, so that finally we have proved
(z=y)=(y=>2)=(y=2z)==true
that is the fifth axiom. '

Third Problem: A “One Variable Problem”
The problem is to prove from the four axioms of W, the following theorem
not((z * (2z)) or (2?)) == not(z) * (2not(z)) or (not(z)?),

where * is an alias for and, 2z is a short hand for z or z and 22 is a short hand for z x z. We
call it “one variable problem” because just one variable appears. A way to split this problem into
easier tasks is as follows:

1. assume z or x == true and prove the theorem from W and z or z == true,
2. assume not(z) or not(x) == true and prove the theorem from W and not(z) or not(z) ==
true.

In principle, in order to have a fully automated proof, one should also prove
(z or z == true) V (not(z) or not(z) == true)

from W. SBR3 has proved Step 1 in 19 sec and Step 2 in 15 sec from W, lemmas 1, 3, 9, 10,
(z and y) = z == (z = (y = 2z)) and z = y == not(z) or y with or AC.

The theorem prover SBR3 is available through ftp: all interested readers may send mail to
bonacina@sbcs.sunysb.edu or to hsiang@sbcs.sunysb.edu for instructions.
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